02: Combinatorics

Jerry Cain
April 3 ${ }^{\text {rd }}, 2024$

Lecture Discussion on Ed

Summary of Combinatorics

$$
n!
$$

General approach to counting permutations

When there are n objects such that
n_{1} are the same (indistinguishable or indistinct), and
n_{2} are the same, and
\cdots
simple example
n_{r} are the same,
The number of unique orderings (permutations) is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

$$
\text { answer 1s: } \frac{5!}{1!1!2!1!}=60
$$

For each group of indistinct objects, divide by the overcounted permutations.

Sort semi-distinct objects

\qquad

How many permutations?

$$
\begin{aligned}
& \text { number of distinct } 5! \\
& \text { orderings is } \frac{5!}{2!3!}=10
\end{aligned}
$$

Strings

How many letter orderings are possible for the following strings?
11 letters

1. KIKIIRIAFIN

$$
\begin{aligned}
& 2 \text { K's, } 5 \text { I's, one of all others } \\
& \frac{11!}{5!2!}
\end{aligned}
$$

2. EFFERVESCENCE

> 13 letters 2 F's, $5 E^{\prime}, 2 C$'s, one of all others $$
\frac{13!}{2!5!2!}
$$

Strings

How many letter orderings are possible for the following strings?

1. KIKIIRIAFIN $=\frac{11!}{5!2!}=166,320$
2. EFFERVESCENCE $=\frac{13!}{2!5!2!}=12,972,960$

Unique 6-digit passcodes with four smudges

\qquad

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:

- One digit repeated three times, other three repeated once
- Two digits repeated twice, other two repeated once

Unique 6-digit passcodes with four smudges
 \qquad

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:

- One digit repeated three times, other three repeated once
- Two digits repeated twice, other two repeated once
first scenario: $\quad n_{1}=4 \cdot \frac{6!}{3!}=480$
4 ways to chrose the digit repeated thue times
second scenario: $n_{2}=6 \cdot \frac{6!}{2!2!}=1080$

Unique 6-digit passcodes with four smudges
 \qquad

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:

- One digit repeated three times, other three repeated once
- Two digits repeated twice, other two repeated once
first scenario:

second scenario: $n_{2}=6 \cdot \frac{6!}{2!2!}=1080$ 6 ways to choose two digits the each appear twree $24,25,28,45,48,58$

Unique 6-digit passcodes with four smudges
 Order n semi-
 \qquad

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:

- One digit repeated three times, other three repeated once
- Two digits repeated twice, other two repeated once
$\left.\begin{array}{ll}\text { first scenario: } & n_{1}=4 \cdot \frac{6!}{3!}=480 \\ \text { second scenario: } & n_{2}=6 \cdot \frac{6!}{2!2!}=1080\end{array}\right] \begin{aligned} & 1560 \text { such } \\ & \text { passcodes }\end{aligned}$

Summary of Combinatorics

Counting tasks on n objects

Combinations I

Summary of Combinatorics

Counting tasks on n objects

Combinations with cake
permutations cave about order combinations don't cave abut order
There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?
here, we don't order the children
 who get cake. they are nit ranked. they ave all peers!
 generative process...

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line
2. Put first k
in cake room
n ! ways
1 way

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line
n ! ways

17

3. Allow cake group to mingle
k ! different permutations all considered the same group of children

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

4. Allow non-cake group to mingle
$k!$ different permutations
all considered the same
group of children

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

Combinations

A combination is an unordered selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

4. Overcounted: any ordering of unchosen group is same choice

Combinations

A combination is an unordered selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

$$
\begin{aligned}
& \text { read int I md as } \\
& \text { nchose } k^{\prime \prime}
\end{aligned}
$$

$$
\frac{n!}{k!(n-k)!}=n!\times 1 \times \frac{1}{k!} \times \frac{1}{(n-k)!}=\binom{n}{k} \begin{aligned}
& \text { Binomial } \\
& \text { coefficient }
\end{aligned}
$$

Note:

$$
\binom{n}{n-k}=\binom{n}{k}
$$

the number of wars to select a gop

$$
\begin{aligned}
& \text { of } 5 \text { chi "larsen from a ass of } 20 \\
& \text { is choose } 5 \text { " }=\binom{20}{5}=\frac{20!}{5!15!}=15504
\end{aligned}
$$

Probability textbooks

How many ways are there to choose a subset of 3 from a set of 6 distinct books? By saying subset, we assume order doesn't matter.

Combinations II

Summary of Combinatorics

Counting tasks on n objects

General approach to combinations

The number of ways to choose r groups of n distinct objects such that For all $i=1, \ldots, r$, group i has size n_{i}, and $\sum_{i=1}^{r} n_{i}=n$ (all objects are assigned), is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}=\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}
$$

Datacenters

$$
\begin{gathered}
\text { Choose } k \text { of } n \text { distinct objects } \\
\text { into } r \text { groups of size } n_{1}, \ldots n_{r}
\end{gathered}\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}
$$

distinct, differment.

Datacenter	$\#$ machines
A	$n_{A}=6$
B	$n_{B}=4$
C	$n_{C}=3$

A. $\binom{13}{6,4,3}=60,060^{n=13}$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$
C. $6 \cdot 1001 \cdot 10=60,060$
D. A and B
E. All of the above

Datacenters

```
Choose k of n distinct objects 
```

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$
C. $6 \cdot 1001 \cdot 10=60,060$
D. A and B
E. All of the above

Datacenters

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$

Strategy: Combinations into 3 groups
Group 1 (datacenter A): $\quad n_{1}=6$
Group 2 (datacenter B): $\quad n_{2}=4$
Group 3 (datacenter C): $\quad n_{3}=3$

$$
\text { \#dirisions }=\frac{13!}{6!4!3!}=60,060
$$

Datacenters

$$
\begin{gathered}
\text { Choose } k \text { of } n \text { distinct objects } \\
\text { into } r \text { groups of size } n_{1}, \ldots n_{r}
\end{gathered}\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}
$$

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$

Strategy: Combinations into 3 groups
Group 1 (datacenter A):
$n_{1}=6$
Group 2 (datacenter B):
$n_{2}=4$
Group 3 (datacenter C): $\quad n_{3}=3$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$

Strategy: Product rule with 3 steps

1. Choose 6 computers for A
2. Choose 4 computers for B
3. Choose 3 computers for C

$$
\begin{aligned}
\frac{13!}{6!7!} \frac{7!}{4!2} \frac{x!}{3!0!} & \Rightarrow \frac{13!}{6!4!3!} \\
& =\binom{13}{6,4,3}
\end{aligned}
$$

Datacenters

```
Choose k of n distinct objects 
```

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$

Strategy: Combinations into 3 groups
Group 1 (datacenter A):
$n_{1}=6$
Group 2 (datacenter B): $\quad n_{2}=4$
Group 3 (datacenter C): $\quad n_{3}=3$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$

Strategy: Product rule with 3 steps

1. Choose 6 computers for $\mathrm{A} \quad\binom{13}{6}$
2. Choose 4 computers for B
3. Choose $\mathbf{3}$ computers for C

Your approach will determine if you use binomial/multinomial coefficients or factorials.

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. Two are by the same author. What if we don't want to choose both?
A. $\binom{6}{3}-\binom{6}{2}=5$ ways
D. $\binom{6}{3}-\binom{4}{1}=16$
B. $\frac{6!}{3!3!2!}=10$
C. $2 \cdot\binom{4}{2}+\binom{4}{3}=16$
E. Both C and D
F. Something else

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. Two are by the same author. What if we don't want to choose both?

Strategy 1: Sum Rule assume two of six books were written by Woolf partition
int three
cases

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. Two are by the same author. What if we don't want to choose both?

Strategy 2: "Forbidden method"
count number of illegal subsets

Forbidden method: It is sometimes easier to exclude invalid cases than to account for all valid cases.

Buckets and The Divider Method

Summary of Combinatorics

Counting tasks on n objects

Balls and urns Hash tables and distinct strings

How many ways are there to hash n distinct strings to r buckets?
Steps:
viridian city

```
ssdfsskdfsd
```

```
ssdfsskdfsd
```

boba

1

1. Bucket $1^{\text {st }}$ string $\rightarrow r$ choices
2. Bucket $2^{\text {nd }}$ string $\longrightarrow r$ choices
n. Bucket $n^{\text {th }}$ string $\rightarrow r$ chrices

$$
r^{n} \text { outcomes }
$$

Summary of Combinatorics

Counting tasks on n objects

Servers and indistinct requests

How many ways are there to distribute n indistinct web requests to r servers?

Goal
Server 1 has x_{1} requests, Server 2 has x_{2} requests,

Server r has x_{r} requests (the rest)

Bicycle helmet sales

How many ways can we assign $n=5$ indistinct children to $r=4$ distinct bicycle helmet styles?

Bicycle helmet sales

1 possible assignment outcome:

Goal Order n indistinct objects and $r-1$ indistinct dividers.

Consider the
following
generative
process...

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University

The divider method: A generative proof

How many ways can we assign $n=5$ indistinct children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

The divider method: A generative proof

How many ways can we assign $n=5$ indistinct children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

1. Order n distinct objects and $r-1$ distinct dividers

$$
(n+r-1)!
$$

The divider method: A generative proof

How many ways can we assign $n=5$ indistinct children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

1. Order n distinct objects and $r-1$ distinct dividers

$$
(n+r-1)!
$$

2. Make n objects indistinct

$$
\frac{1}{n!}
$$

The divider method: A generative proof

How many ways can we assign $n=5$ indistinct children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

1. Order n distinct objects and $r-1$ distinct dividers

$$
(n+r-1)!
$$

2. Make n objects indistinct

1
$n!$
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
3. Make $r-1$ dividers indistinct

$$
\frac{1}{(r-1)!}
$$

The divider method

The number of ways to distribute n indistinct objects into r buckets is equivalent to the number of ways to permute $n+r-1$ objects such that n are indistinct objects, and
$r-1$ are indistinct dividers:

$$
\begin{aligned}
\text { Total } & =(n+r-1)!\times \frac{1}{n!} \times \frac{1}{(r-1)!} \\
& =\binom{n+r-1}{r-1} \text { outcomes }
\end{aligned}
$$

Venture capitalists

You have $\$ 10$ million to invest in 4 companies (in units of $\$ 1$ million).

1. How many ways can you fully allocate your $\$ 10$ million?
2. What if you want to invest at least $\$ 3$ million in company 1 ?
3. What if you don't have to invest all your money?

Venture capitalists. \#1

You have $\$ 10$ million to invest in 4 companies (in units of $\$ 1$ million).

1. How many ways can you fully allocate your $\$ 10$ million?
one such prssibility \$

Set up

$x_{1}+x_{2}+x_{3}+x_{4}=10$
x_{i} : amount invested in company i

$$
\begin{aligned}
& x_{i} \geq 0 \\
& x_{i} \text { are integus }
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \binom{10+4-1}{4-1} \\
& =\binom{13}{3}=286
\end{aligned}
$$

Venture capitalists. \#2

You have $\$ 10$ million to invest in 4 companies (in units of $\$ 1$ million).

1. How many ways can you fully allocate your $\$ 10$ million?
2. What if you want to invest at least $\$ 3$ million in company 1 ?

Set up

$$
x_{1}+x_{2}+x_{3}+x_{4}=10
$$

x_{i} : amount invested in company i
added unstraint: $\$ 3 M$ goes to company but remaining $\$ 7 \mathrm{M}$ can be freely allreated
So, we'le really solving $\begin{gathered}y_{1}+y_{2}+y_{3}+y_{4}=7 \\ y_{i} \geq 0\end{gathered}$

$$
\begin{gathered}
y_{1}+y_{2}+y_{3}+y_{4}=7 \\
y_{i} \geq 0
\end{gathered}
$$

$$
\begin{aligned}
\binom{7+4-1}{4-1} & =\binom{10}{3} \\
& =120
\end{aligned}
$$

Venture capitalists. \#3

You have $\$ 10$ million to invest in 4 companies (in units of $\$ 1$ million).

1. How many ways can you fully allocate your $\$ 10$ million?
2. What if you want to invest at least $\$ 3$ million in company 1 ?
3. What if you don't have to invest all your money?

Set up $x_{1}+x_{2}+x_{3}+x_{4} \leq 10$ x_{i} : amount invested in company i $x_{i} \geq 0$
we are really solving

Solve

$$
\begin{aligned}
\binom{10+5-1}{5-1} & =\binom{14}{4} \\
& =1001
\end{aligned}
$$

$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=101$
where X_{5} counts the money
yon elect to not invest

Summary of Combinatorics

Counting tasks on n objects

- determine if objects are distinct
- use product rule if several steps
- use inclusion-exclusion if different cases

Combinatorial Proofs

Combinatorial Proofs

A combinatorial proof-sometimes called a story proof-is a proof that counts the same thing in two different ways, forgoing any tedious algebra.
Combinatorial proofs aren't as formal as CS103 proofs, but they still need to convince the reader something is true in an absolute sense.
An algebraic proof of, say, $\binom{n}{k}=\binom{n}{n-k}$ is straightforward if you just write combinations in terms of factorials.
A combinatorial proof makes an identity like $\binom{n}{k}=\binom{n}{n-k}$ easier to believe and understand intuitively.

Combinatorial Proof:
Consider choosing a set of k CS109 CAs from a total of n applicants. We know that there are $\binom{n}{k}$ such possibilities. Another way to choose the k CS109 CAs is to disqualify $n-k$ applicants. There are ($\binom{n}{n-k}$ ways to choose which $n-k$ don't get the job. Specifying who is on CS109 course staff is the same as specifying who isn't. That means that $\binom{n}{k}$ and $\binom{n}{n-k}$ must be counting the same thing.

Combinatorial Proofs

Let's provide another combinatorial proof, this time proving that

$$
n\binom{n-1}{k-1}=k\binom{n}{k}
$$

This is easy to prove algebraically (provided k and n are positive integers, with $k \leq n$). A combinatorial/story proof, however, is more compelling!

Combinatorial Proof:
Consider n candidates for college admission, where k candidates can be accepted, and precisely one of the k is selected for a full scholarship. We can first choose the lucky recipient of the full scholarship and then select an additional k - 1 applicants from the remaining $n-1$ applicants to round out the set of admits. Or we can select which k applicants are accepted and then choose which of those k gets the full ride.

