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General approach to counting permutations

When there are n objects such that
n, are the same (indistinguishable or indistinct), and

n, are the same, and Slmple examyle”
how w shirrez aoma
n, are the same, be ‘Z:Vﬂw _Za“ Ho
The number of unique orderings (permutations) is leHeve 1n
M Y
n! ) '
' ' - anewen 1<- S VA4
NNy Ny L (1

For each group of indistinct objects,
divide by the overcounted permutations.
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Order n semi- n!

Sort semi-distinct objects distinct objects T, 1T

v by ;—6 Av ket c!

How many permutations? ovALAVS < i = 1D

2! 3]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 4



Order n semi- n!

Strings distinct objects n;!n,!---n,!

How many letter orderings are possible for the following strings?
|l )eleng

v \(@3 g’l“g ) me. aJD(XW oHevs
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g2l
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Order n semi- n!

Strings distinct objects ny!n,!---n,!

How many letter orderings are possible for the following strings?

. KIKIIRIAFIN = 51'—12', = 166,320
. EFFERVESCENCE = —>—= 12,972,960
o
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Order n semi- n!

Unique 6-digit passcodes with four smudges aistinct objects mmr—m1

How many unique 6-digit passcodes are possible if a
phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:
* One digit repeated three times, other three repeated once
* Two digits repeated twice, other two repeated once

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford Ul'liVGI'Sity 7



Order n semi- n!

Unique 6-digit passcodes with four smudges aistinct objects mmr—m1

How many unique 6-digit passcodes are possible if a
phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:
* One digit repeated three times, other three repeated once

first scenario: n, =4-—=480
4 woy b chinge the dignt \,epeau\a( e Himeg
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Order n semi- n!

Unique 6-digit passcodes with four smudges aistinct objects mmr—m1

How many unique 6-digit passcodes are possible if a
phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:

* Two digits repeated twice, other two repeated once

second scenario: n, = 6 - o _ = 1080
6 way H ot v 0\1%\}1 «}’ke-eac/{/\ oppeov twree

24,25 | 28, 45,48, 58
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Order n semi- n!

Unique 6-digit passcodes with four smudges aistinct objects mmr—m1

How many unique 6-digit passcodes are possible if a
phone password uses each of four distinct numbers?

Two mutually exclusive scenarios:
* One digit repeated three times, other three repeated once
* Two digits repeated twice, other two repeated once

=

first scenario: ng=4- 6—: = 480
3 1560 such

passcodes

. 6!
second scenario: n, = 6 - o 1080
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Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets
Distinct Some

(distinguishable) distinct
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Combinations I




Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets

/ \ Distinct
Distinct Some [6

(distinguishable) distinct

n!

n!
nl!nz! “'Tlr!
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Combinations with cake |\ o /0

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?
heve  we A 'k Aoy the el ldien
Who gt cake . they a8 vt vanbid.
'HM&‘ one all P"?CVQ(

‘)\ Consider the following
generative process...
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Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

ééﬁ

1. n people
getin line

n! ways
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Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

&

\w‘

e uN
A TR Y

16

1. n people 2. Putfirst k
get in line in cake room

n! ways 1 way
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Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

2 © 8 & | T 5 % 1 11 1 13
TsEwee |,

14 15 16 17 18 19 20

2. Putfirst k
IN cake room

1 way
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Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

A i e pemiios

: - |
& 6 7 8 9 10

iv@f

14 15 16 17 18

3. Allow cake
group to mingle

k! different permutations
all considered the same
group of children
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Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

e 6 \;3
® =u |vE® é ‘2
~IZ H ~=—
1. n people 2. Putfirst k 3. AIIow Cake 4. AIIow non-cake
get in line In cake room group to mingle group to mingle
k! different permutations
n! ways 1 way all considered the same

group of children
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Combinations with cake

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?
(1-1) et
.o ‘

:‘: & .
st ‘)‘ ‘ t‘)
it t\

‘ & e . 5
n-Fifferet
pemiatonsl ldito =
thesamegoupofoffifen Dtrsbien
p mutafions H Badto

"“ :

1. n people 2. Putfirst k 3. Allow cake 4. Allow non-cake
get in line In cake room group to mingle group to mingle
k! different permutations (n — k)! different
n! ways 1 way all considered the same  permutations all lead to
group of children the same group of children
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Combinations

A combination is an unordered selection of k objects
from a set of n distinct objects.

The number of ways of making this selection is

n!
— n!
K (n—k)! "“x (n—k)'&

f ﬁ 4. Qvercounted:
any ordering
1.0rdern 5 Take first k 3. Overcounted: of unchosen

distinct as chosen any ordering of group is
objects chosen group is same choice
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Combinations

A combination is an unordered selection of k objects
from a set of n distinct objects.

vesd my Imd ag

The number of ways of making this selection is b Oheoge k"
Ve !
n! %1 x 1 o I (n) Binomial
kKl(n—k) k!" (n—k)! I/ coefficient
n n e v loex of Wogyt Fo Select a game
- — P o cdagg /20
Note: (n—k) (k) H S dldran réo 2 ey

15 20 choge B = Qg !
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1. Ch kof (T
PrObablllty tethOOkS ndistinc(:)tojte)}jecfc)s (k)

How many ways are there to choose a subset of 3

from a set of 6 distinct books? By saying subset,
we assume order doesn’t matter.

6 6!
( ) = 20 ways

3) ~ 313
~_
Wwe Amk come hov dpy we <o abmt
Ay Y Y oMV e ovdon ,ré Hovte biwks
W o Yinee se bieted We 14wove .

\om &
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Combinations II




Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets

|
/ \ Distinct

Distinct Some / \

(distinguishable) distinct 1 group r groups

!
n nl!nzn!---nr! (:) Q
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General approach to combinations

The number of ways to choose r groups of n distinct objects such that
Foralli =1,..,r, group i has size n;, and
i—1n; = n (all objects are assigned), is

; ( ) )
n{n,!---n,l Ny, Ny, , Ny

Multinomial coefficient
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Datacenters

Choose k of n distinct objects n
into r groups of size nq, ... n, Ny, Ny, o, Ny

ot

ﬁ“?*w M 9‘\" %‘Qa\\ CWV“’V’V\W‘Q Datacenter | # machines
13 different computers are to be allocated to A = 6
3 datacenters as shown in the table: B g 4
How many different divisions are possible? C m,: 3

A.
B
C.
D

E.

e

n=\%
13
(6,4,3) = 60,060

($)(2) () = 60,060

6-1001-10 = 60,060
A and B
All of the above
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Choose k of n distinct objects ( n )

Datacenters into r groups of size ny, ...n \nq,n,, -+, n,
Datacenter # machines
13 different computers are to be allocated to A 6
3 datacenters as shown in the table: B A
How many different divisions are possible? C 3
13
(6,4,3) = 60,060

($)(E)E) = so00s0
61001 - 10 = 60,060

A and B
All of the above
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Choose k of n distinct objects n
Datacenters into r groups of size nq, ...n, <n1, Ny, -, Ny )
Datacenter # machines
13 different computers are to be allocated to A 6
3 datacenters as shown in the table: B A
How many different divisions are possible? C 3

13
(6,4,3) = 60,060

Strategy: Combinations into 3 groups
Group 1 (datacenterA): n; =6
Group 2 (datacenterB): n, =4
Group 3 (datacenter C): n3; =3

q 2 )
FAivicimsg = AEL

= EOXDbD
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Choose k of n distinct objects n
Datacenters into r groups of size nq, ... n, <n1, Ny, -, Ny )
Datacenter # machines
13 different computers are to be allocated to A 6
3 datacenters as shown in the table: B A

How many different divisions are possible?

C 3

13\ /(7\ /(3
( 6 )(4) (3) = 60,060
Strategy: Product rule with 3 steps

Choose 6 computers for A (163)
Choose 4 computers for B (Z)

Choose 3 computers for C (3)
)/T \/K} ~> \?].
avA 30l 7 614l 3l
/ L\\% 3 \2
- (614\2
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Choose k of n distinct objects n
DatacenteI‘S into r groupz of size nq, ... n, <n1, Ny, -, Ny )
Datacenter # machines
13 different computers are to be allocated to A 6
3 datacenters as shown in the table: B A
How many different divisions are possible? C 3
13 _ (13)(7) (3) _
(6,4,3) = 60,060 6 J\a)\3) = 60,060
Strategy: Combinations into 3 groups Strategy: Product rule with 3 steps

Choose 6 computers forA (%
Choose 4 computers for B (
Choose 3 computers for C >)

Group 1 (datacenterA): n; =6
Group 2 (datacenterB): n, =4
Group 3 (datacenter C): n3; =3

Your approach will determine if you use
binomial/multinomial coefficients or factorials.
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Choose k of (n)

PrObablllty tEthOOkS n distinct objects \k

2. Two are by the same author. What if we don’t want to choose both?

() =5 wars 0 (- (=16
|

B. 3!;2! =10 E. BothCandD

c. 2 (‘2]“) + (;1') =16 F. Something else

2
&
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1 Ch kof (T
Probability textbooks n distnct ojects i)

2. Two are by the same author. What if we don’t want to choose both?

Strategy 1: Sum Rule a3¢uwme Awe s $I1% binke werr wyi Hen by Woo | &
stheve by outhns A8 C 3\)

W\ Woo\ & Woo\& A B »
?NAA % >< \4\’— c‘mow avwl +“'° 3\ 7 (i)

¢ _~ o~ -
Mv

%(ﬁ \/ \e—~c\nnw OVtL] e _‘7\ — (4‘>

B 'W\\—er? =
7§ \e-——c\now’
~ owrecrc 2(4) ¥ )— -
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Choose k of (n)

PrObablllty tEthOOkS n distinct objects \k

2. Two are by the same author. What if we don’t want to choose both?
oveenen 1S (%) - (‘%) = 1&

Strategy 2: "Forbidden method"
covnt nuw ey 0—6 i\\z%a\ subsete

Wor W Wl A B C > 4
v Ve \@dﬂbocelu('("“f’el = <‘)

Forbidden method: It is
sometimes easier to exclude
invalid cases than to account

for all valid cases.
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Buckets and The
Divider Method




Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets

/ \ Distinct / \

Distinct Some / \
(distinguishable) distinct 1 group r groups Distinct Indistinct
n! n ( n ) @
|
n nl!nz!“'nr! (k) nqiy, Ny, e, Ny
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Ballsandurns Hash tables and distinct strings

How many ways are there to hash n distinct strings to r buckets?

Steps:
1. Bucket 18t string — ¥ cholceg

ssdfsskdfsd fooandbaz

2.  Bucket 2" string — v vpitec

boba

viridian city

1 2 r r™ outcomes

n. Bucket nt" string — v chrucec
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Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets
/ \ Distinct / \
Distinct Some / \
(distinguishable) distinct 1 group r groups Distinct Indistinct
(o 5
| n
n nl!nz!“'nr! (k) nqiy, Ny, e, Ny r
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Servers and indistinct requests

How many ways are there to distribute n indistinct web requests to r servers?

request request Goal
Server 1 has x; requests,
request request
Server 2 has x, requests,
Server r has x, requests (the rest)
1 2 r
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Bicycle helmet sales

How many ways can we assign n = 5 indistinct children to r = 4 distinct
bicycle helmet styles?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 40



Bicycle helmet sales

1 possible assignment outcome:

Goal Order n indistinct objects and r — 1 indistinct dividers.

| 2
A
e e
A G

N

Consider the

following . "‘;
generative v 6 e

process...
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The divider method: A generative proof

How many ways can we assign n = 5 indistinct children to r = 4 distinct
bicycle helmet styles?

Goal Order n indistinct objects and r — 1 indistinct dividers.

0. Make objects and dividers distinct

o 6 & ©
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The divider method: A generative proof

How many ways can we assign n = 5 indistinct children to r = 4 distinct
bicycle helmet styles?

Goal Order n indistinct objects and r — 1 indistinct dividers.

y :
4

1. Order n distinct
objectsand r — 1
distinct dividers

n+r-—1)!
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The divider method: A generative proof

How many ways can we assign n = 5 indistinct children to r = 4 distinct
bicycle helmet styles?

Goal Order n indistinct objects and r — 1 indistinct dividers.

o & & ©
F- vV X

2. Make n objects
indistinct
1
n!
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The divider method: A generative proof

How many ways can we assign n = 5 indistinct children to r = 4 distinct
bicycle helmet styles?

Goal Order n indistinct objects and r — 1 indistinct dividers.

3. Make r — 1 dividers
indistinct
1
(r—1)!
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The divider method

bunekets av
A otHwet oA s\A2 ek

The number of ways to distribute n indistinct objects intom IS

equivalent to the number of ways to permute n + r — 1 objects such that
n are indistinct objects, and
r — 1 are indistinct dividers:

1 1
Total=(n+r—1)!x —X
( ) n!  (r-1)!
(n + r — 1)
S outcomes
r — 1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 46



. . Divider method /m+71r —1
Venture CapltahStS (n indistinct objects, r buckets) ( r—1 )

You have $10 million to invest in 4 companies (in units of $1 million).
How many ways can you fully allocate your $10 million?
What if you want to invest at least $3 million in company 17?
What if you don’t have to invest all your money?
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C e Divider method (m +1r —1
Venture capitalists. #1 to,7 buokets)

(n indistinct objects, r buckets) r—1 )

You have $10 million to invest in 4 companies (in units of $1 million)

1. How many ways can you fully allocate your $10 million?
one Sui prsc'\b\\'nh,] “

¢ IR
g\i\\“‘%

Set up IR Solve
X1+ x5 +x3+x4 =10 Q\O—F‘x"\)
X;: amount invested in company i 4~\
741\ o ndrg s ( s 28L
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. . Divider method /m+71r —1
Venture CapltahStS. #Z (n indistinct objects, r buckets) ( r—1 )

You have $10 million to invest in 4 companies (in units of $1 million).

2. What if you want to invest at least $3 million in company 1?

Set up Solve
x1+x2 +x3 +X4 =10
7++—l QW
x;: amount invested in company i 7
sdied vmchaint = $BM gaes b cmpong \ _ l2.
KTM bv@?&"l O

\OM‘\’ Whmvj

o\l reated _
! Wy solv Y Y e =1
Sb, Weie yealy Soivtig Y, 2 b
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. . Divider method /m+71r —1
Venture CapltahStS. #3 (n indistinct objects, r buckets) ( r—1 )

You have $10 million to invest in 4 companies (in units of $1 million).

3. What if you don’t have to invest all your money?
|

Set up Solve
X1+ x, +x3+x, <10
1 2 3 4 — QD +g \) Q >
x;: amount invested in company i

xl-20 i | \G_D\
We awe really soluivg
Yo H%a FRy g % T
Wcld’h\nlﬁ‘w\w&'\‘
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Summary of Combinatorics

Counting tasks on n objects

T

Sort objects Choose k objects Put objects in r
(permutations) (combinations) buckets

SN e/

Distinct Some / \

(distinguishable) distinct Distinct Indistinct

1 group T groups

» determine if objects are distinct
* use product rule if several steps
* use inclusion-exclusion if different cases Stanford University s1




Combinatorial
Proofs




Combinatorial Proofs

A combinatorial proof—sometimes called a story proof—is a proof that counts the same thing in
two different ways, forgoing any tedious algebra.

Combinatorial proofs aren’t as formal as CS103 proofs, but they still need to convince the
reader something is true in an absolute sense.

An algebraic proof of, say, () = (,," ) is straightforward if you just write combinations in terms
of factorials.

A combinatorial proof makes an identity like () = (,,™ ) easier to believe and understand
intuitively.

Combinatorial Proof:

onsider choosing a set of k CS109 CAs from a total of n applicants. We know that there are
&1) such possibilities. Another way to choose the k CS109 CAs is to disqualify n - k
applicants. There are nfk) ways to choose which n - k don’t get the job. Specifyin)g who is on
CS109 course staff is the Same as specifying who isn’t. That means that (};) and (", ) must

be counting the same thing. n—k
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Combinatorial Proofs

Let’s provide another combinatorial proof, this time proving that
-1\ _
() = k()

This is easy to prove algebraically (provided k and n are positive integers, with k < n). A
combinatorial/story proof, however, is more compelling!

Combinatorial Proof:

Consider n candidates for college admission, where k candidates can be accepted, and
precisely one of the k is selected for a full scholarship. We can first choose the lucky recipient
of the full scholarship and then select an additional k - 1 applicants from the remaining n - 1
applicants to round out the set of admits. Or we can select which k applicants are accepted

and then choose which of those k gets the full ride.
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