o5: Independence

Jerry Cain April 10th, 2024

Lecture Discussion on Ed

Independence I

Independence

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

Otherwise *E* and *F* are called <u>dependent</u> events.

If *E* and *F* are independent, then:

$$P(E|F) = P(E)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Intuition through proof

Independent events *E* and *F* P(EF) = P(E)P(F)

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
$$= \frac{P(E)P(F)}{P(F)}$$
$$= P(E)$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Knowing that F happened does not change our belief that E happened.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Dice, our misunderstood friends

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

$$G = \{(1,4), (2,3), (3,2), (4,1)\}$$

1. Are E and F independent?

P(E) = 1/6 P(F) = 1/6 P(EF) = 1/36 \overrightarrow{I} independent

2. Are *E* and *G* independent?

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$
× dependent

Generalizing independence

Three events *E*, *F*, and *G* are independent if: P(EFG) = P(E)P(F)P(G), andP(EG) = P(E)P(G), andP(FG) = P(F)P(G)

n events
$$E_1, E_2, ..., E_n$$
 are
independent if:
$$for r = 1, ..., n:$$
for every subset $E_1, E_2, ..., E_r$:
$$P(E_1E_2 ... E_r) = P(E_1)P(E_2) \cdots P(E_r)$$

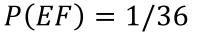
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 . •
 - Let event *E*: $D_1 = 1$ event *F*: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$ *G* = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

$$= \{(16)(25)(34)(43)(52)(61)\}$$

- independent? independent?
- **1.** Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, G
 - independent? independent?



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 . •
 - Let event *E*: $D_1 = 1$ event *F*: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, G🔽 independent?

v independent?

independent? X independent?

P(EF) = 1/36

Pairwise independence is not sufficient to prove independence of 3 or more events!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Independence II

Independent trials

We often are interested in experiments consisting of *n* independent trials.

- *n* trials, each with the same set of possible outcomes
- *n*-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

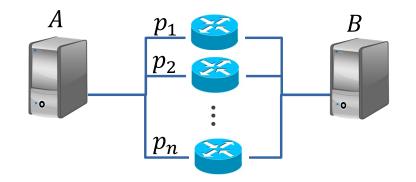
- Flip a coin *n* times
- Roll a die *n* times
- Send a multiple-choice survey to *n* people
- Send *n* web requests to *k* different servers

Network reliability

Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Network reliability

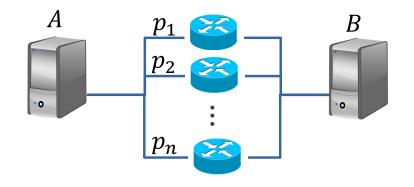
Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

$$P(E) = P(\ge 1 \text{ one router works})$$

= 1 - P(all routers fail)
= 1 - (1 - p₁)(1 - p₂) ... (1 - p_n)
= 1 - $\prod_{i=1}^{n} (1 - p_i)$



 \geq 1 with independent trials: take complement

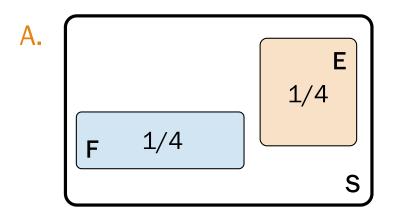
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

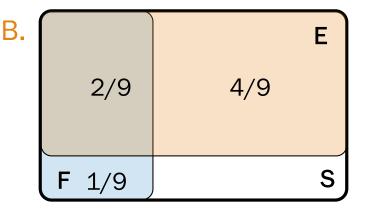
Exercises

Independence?

Independent P(EF) = P(E)P(F)events *E* and *F* P(E|F) = P(E)

- **1.** True or False? Two events *E* and *F* are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?



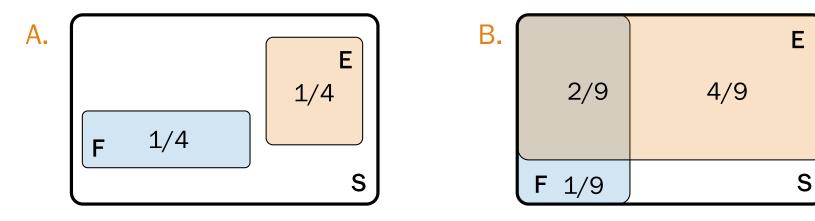


Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** True or False? Two events *E* and *F* are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?



Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- **3.** P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

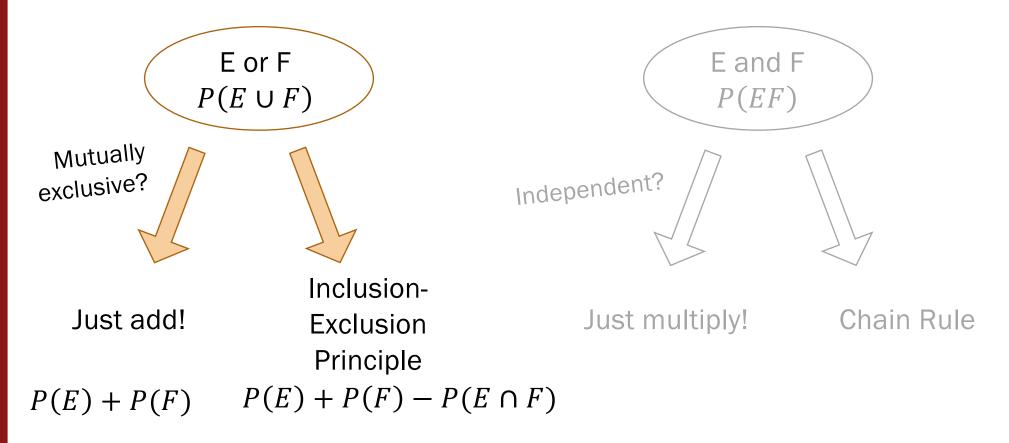
$$\binom{n}{k} p^k (1-p)^{n-k}$$

of mutually P(a particular outcome's
 exclusive k heads on n coin flips)
 outcomes

Make sure you understand #4! It will come up again.

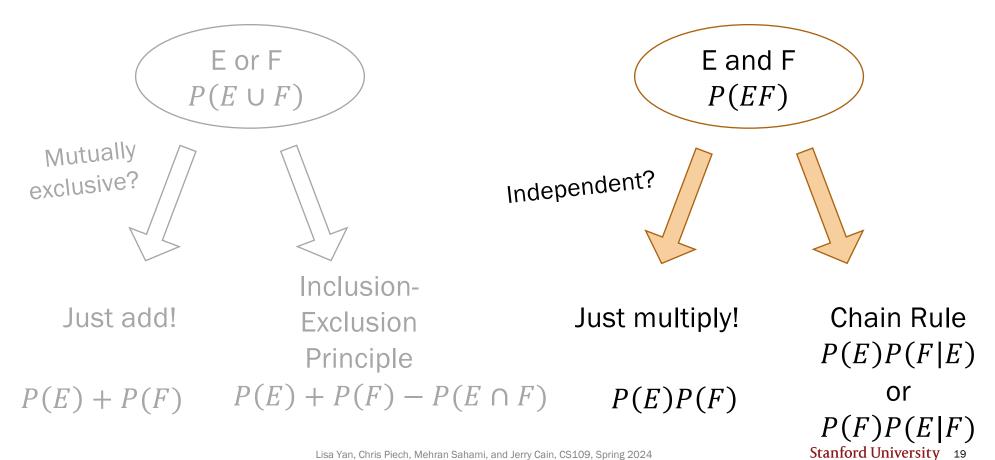
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Probability of events

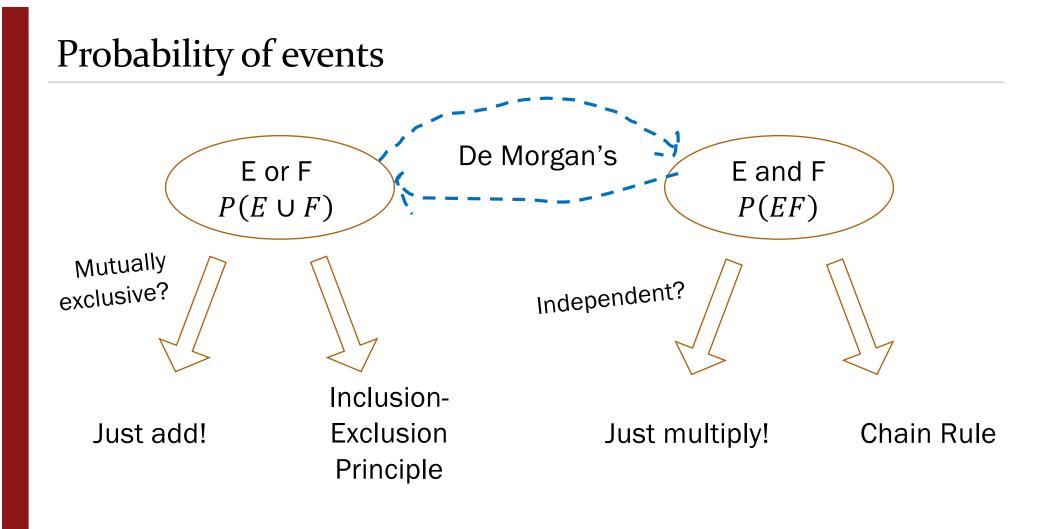


Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Probability of events



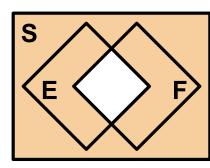
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

De Morgan's Laws

De Morgan's lets you switch between AND and OR.



$$(E \cap F)^{C} = E^{C} \cup F^{C}$$
$$\left(\bigcap_{i=1}^{n} E_{i}\right)^{C} = \bigcup_{i=1}^{n} E_{i}^{C}$$

In probability:

$$P(E_1E_2 \cdots E_n)$$

$$= 1 - P((E_1E_2 \cdots E_n)^C)$$

$$= 1 - P(E_1^C \cup E_2^C \cup \cdots \cup E_n^C)$$
Great if E_i^C mutually exclusive!

SEF

 $(E \cup F)^{C} = E^{C} \cap F^{C}$ $\left(\bigcup_{i=1}^{n} E_{i}\right)^{C} = \bigcap_{i=1}^{n} E_{i}^{C}$

In probability:

$$P(E_1 \cup E_2 \cup \cdots \cup E_n)$$

$$= 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^c)$$
$$= 1 - P(E_1^c E_2^c \cdots E_n^c)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Great if E_i independent! Stanford University 21

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

1. E =bucket 1 has ≥ 1 string hashed into it?

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

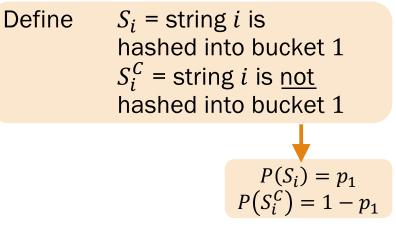
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. E = bucket 1 has \ge 1 string hashed into it?



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if **1.** E = bucket 1 has ≥ 1 string hashed into it? Define S_i = string *i* is hashed into bucket 1 <u>WTF</u> (not-real acronym for Want To Find): S_i^C = string *i* is <u>not</u> hashed into bucket 1 $P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$ $= 1 - P((S_1 \cup S_2 \cup \dots \cup S_m)^C)$ Complement $P(S_i) = p_1$ $= 1 - P(S_1^C S_2^C \cdots S_m^C)$ De Morgan's Law $P(S_{i}^{C}) = 1 - p_{1}$ $= 1 - P(S_1^{C})P(S_2^{C}) \cdots P(S_m^{C}) = 1 - (P(S_1^{C}))^m$ S_i independent trials $= 1 - (1 - p_1)^m$ Stanford University 24 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

More hash table **fun**: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
? = $1 - P(F_1^C) P(F_2^C) \cdots P(F_k^C)$

Define F_i = bucket *i* has at least one string in it

 F_i bucket events are dependent!

So we cannot approach with complement.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

More hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
= $P(buckets 1 to k all denied strings)$
= $(P(each string hashes to k + 1 or higher))^m$
= $(1 - p_1 - p_2 \dots - p_k)^m$

$$= 1 - (1 - p_1 - p_2 \dots - p_k)^m$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024