05: Independence
 Jerry Cain
 April $10^{\text {th }}, 2024$

Lecture Discussion on Ed

Independence I

Independence

Two events E and F are defined as independent if:

$$
P(E F)=P(E) P(F)
$$

Otherwise E and F are called dependent events.

If E and F are independent, then:

$$
P(E \mid F)=P(E)
$$

Intuition through proof

Statement:

$$
\text { If } E \text { and } F \text { are independent, then } P(E \mid F)=P(E)
$$

Proof:

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E F)}{P(F)} \\
& =\frac{P(E) P(F)}{P(F)} \\
& =P(E)
\end{aligned}
$$

Definition of
conditional probability
Independence of E and F

Taking the bus to cancellation city Knowing that F happened does not change our belief that E happened.

Dice, our misunderstood friends

- Roll two 6-sided dice, yielding values D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event F : $\quad D_{2}=6$
event $G: \quad D_{1}+D_{2}=5$

$$
G=\{(1,4),(2,3),(3,2),(4,1)\}
$$

1. Are E and F independent?

$$
\begin{aligned}
& P(E)=1 / 6 \\
& P(F)=1 / 6 \\
& P(E F)=1 / 36 \\
& \nabla \text { independent }
\end{aligned}
$$

2. Are E and G independent?

$$
\begin{aligned}
& P(E)=1 / 6 \\
& P(G)=4 / 36=1 / 9 \\
& P(E G)=1 / 36 \neq P(E) P(G) \\
& \mathbf{X}_{\underline{\text { dependent }}}
\end{aligned}
$$

Generalizing independence

Three events E, F, and $G \quad\left\{\begin{array}{l}P(E F G)=P(E) P(F) P(G) \text {, and } \\ \text { are independent if: } \\ P(E F)=P(E) P(F) \text {, and } \\ P(E G)=P(E) P(G) \text {, and } \\ P(F G)=P(F) P(G)\end{array}\right.$
n events $E_{1}, E_{2}, \ldots, E_{n}$ are
independent if: $\left\{\begin{array}{c}\text { for } r=1, \ldots, n \text { : } \\ \text { for every subset } E_{1}, E_{2}, \ldots, E_{r}: \\ P\left(E_{1} E_{2} \ldots E_{r}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{r}\right)\end{array}\right.$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event F : $\quad D_{2}=6$
event $G: \quad D_{1}+D_{2}=7$
$G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

1. Are E and $F \quad$ 2. Are E and G
∇ independent? independent?
2. Are F and G independent? independent?
$P(E F)=1 / 36$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event F : $\quad D_{2}=6$
event G : $\quad D_{1}+D_{2}=7$
$G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

1. Are E and F 2. Are E and G 3. Are F and G 4. Are E, F, G
∇ independent?
∇ independent?
∇ independent?
X independent?
$P(E F)=1 / 36$

Pairwise independence is not sufficient to prove independence of 3 or more events!

Independence II

Independent trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- n-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin n times
- Roll a die n times
- Send a multiple-choice survey to n people
- Send n web requests to k different servers

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_{i} of functioning (where $1 \leq i \leq n$)
- $E=$ functional path from A to B exists.

What is $P(E)$?

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_{i} of functioning (where $1 \leq i \leq n$)
- $E=$ functional path from A to B exists.

What is $P(E)$?

$$
\begin{aligned}
P(E) & =P(\geq 1 \text { one router works }) \\
& =1-P(\text { all routers fail }) \\
& =1-\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

≥ 1 with independent trials: take complement

Exercises

Independence?

1. True or False? Two events E and F are independent if:
A. Knowing that F happens means that E can't happen.
B. Knowing that F happens doesn't change probability that E happened.
2. Are E and F independent in the following pictures?

Independence?

1. True or False? Two events E and F are independent if:
A. Knowing that F happens means that E can't happen.
B. Knowing that F happens doesn't change probability that E happened.
2. Are E and F independent in the following pictures?

Coin Flips

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

1. $\quad P$ (n heads on n coin flips)
2. $\quad P(n$ tails on n coin flips $)$
3. $\quad P$ (first k heads, then $n-k$ tails)
4. $\quad P$ (exactly k heads on n coin flips)

Coin Flips

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

1. $\quad P$ (n heads on n coin flips)
2. $\quad P(n$ tails on n coin flips $)$
3. $\quad P$ (first k heads, then $n-k$ tails)
4. $\quad P$ (exactly k heads on n coin flips)
```
\(\binom{n}{k} p^{k}(1-p)^{n-k}\)
\# of mutually \(\quad P\) (a particular outcome's
    exclusive \(\quad k\) heads on \(n\) coin flips)
```


Probability of events

Probability of events

Just add!

Inclusion-
Exclusion
Principle

Just multiply!
$P(E) P(F)$

Probability of events

$(E \cap F)^{C}=E^{C} \cup F^{C} \quad$ In probability:

$$
\begin{aligned}
\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{C} \quad \begin{aligned}
P(& \left.E_{1} E_{2} \cdots E_{n}\right) \\
& =1-P\left(\left(E_{1} E_{2} \cdots E_{n}\right)^{C}\right) \\
& =1-P\left(E_{1}^{C} \cup E_{2}^{c} \cup \cdots \cup E_{n}^{c}\right)
\end{aligned}
\end{aligned}
$$

Great if E_{i}^{C} mutually exclusive!

$(E \cup F)^{C}=E^{C} \cap F^{C}$
$\left(\bigcup_{i=1}^{n} E_{i}\right)^{C}=\bigcap_{i=1}^{n} E_{i}^{C}$
$P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)$
$=1-P\left(\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)^{C}\right)$
$=1-P\left(E_{1}^{c} E_{2}^{c} \cdots E_{n}^{c}\right)$
Great if E_{i} independent!

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?

$$
\begin{aligned}
& \text { Define } \quad S_{i}=\text { string } i \text { is } \\
& \text { hashed into bucket } 1 \\
& S_{i}^{C}=\text { string } i \text { is not } \\
& \text { hashed into bucket } 1 \\
& P\left(S_{i}\right)=p_{1} \\
& P\left(S_{i}^{C}\right)=1-p_{1}
\end{aligned}
$$

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?

$$
\text { Define } \quad S_{i}=\text { string } i \text { is }
$$ hashed into bucket 1 $S_{i}^{C}=$ string i is not hashed into bucket 1

$P(E)=P\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)$
$=1-P\left(\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)^{C}\right) \quad$ Complement

$$
P\left(S_{i}\right)=p_{1}
$$

$$
=1-P\left(S_{1}^{C} S_{2}^{C} \cdots S_{m}^{C}\right) \quad \text { De Morgan's Law } \quad P\left(S_{i}^{C}\right)=1-p_{1}
$$

$$
=1-P\left(S_{1}^{C}\right) P\left(S_{2}^{C}\right) \cdots P\left(S_{m}^{C}\right)=1-\left(P\left(S_{1}^{C}\right)\right)^{m} \quad S_{i} \text { independent trials }
$$

$$
=1-\left(1-p_{1}\right)^{m}
$$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
$P(E) \quad=P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)$
Define $\quad F_{i}=$ bucket i has at
$=1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right)$
$=1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right)$
$?=1-P\left(F_{1}^{C}\right) P\left(F_{2}^{C}\right) \cdots P\left(F_{k}^{c}\right)$
4
F_{i} bucket events are dependent!
So we cannot approach with complement.

More hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
\begin{aligned}
P(E) & =P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) \quad \text { Define } \begin{array}{l}
F_{i}=\text { bucket } i \text { has at } \\
\text { least one string in it }
\end{array} \\
& =1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right) \quad \begin{array}{l}
=P(\text { buckets } 1 \text { to } k \text { all denied strings }) \\
\\
\\
=1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right) \longrightarrow\left(P(\text { each string hashes to } k+1 \text { or higher) })^{m}\right. \\
=\left(1-p_{1}-p_{2} \cdots-p_{k}\right)^{m}
\end{array} \\
& =1-\left(1-p_{1}-p_{2} \cdots-p_{k}\right)^{m}
\end{aligned}
$$

