o6: Random Variables

Jerry Cain April 12th, 2024

Lecture Discussion on Ed

Conditional Independence

2

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 Corollary 1 (complement) Transitivity **Chain Rule**

Bayes' Theorem

 $0 \le P(A|E) \le 1$ $P(A|E) = 1 - P(A^C|E)$ P(AB|E) = P(BA|E)P(AB|E) = P(B|E)P(A|BE) $P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)}$ **BAE** 's theorem?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional Independence

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events A and B are defined as <u>conditionally independent given E</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)B. P(A|BE) = P(A)C. P(A|BE) = P(A|E)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional Independence

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events A and B are defined as <u>conditionally independent given E</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A.
$$P(A|B) = P(A)$$

B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$

E is the "new sample space", so left and right side must both be conditioned on E.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Netflix and Condition

Let E = a user watches Life is Beautiful. Let F = a user watches Amelie. What is P(E)?

Review

$$P(E) \approx \frac{\text{\# people who have watched movie}}{\text{\# people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$$

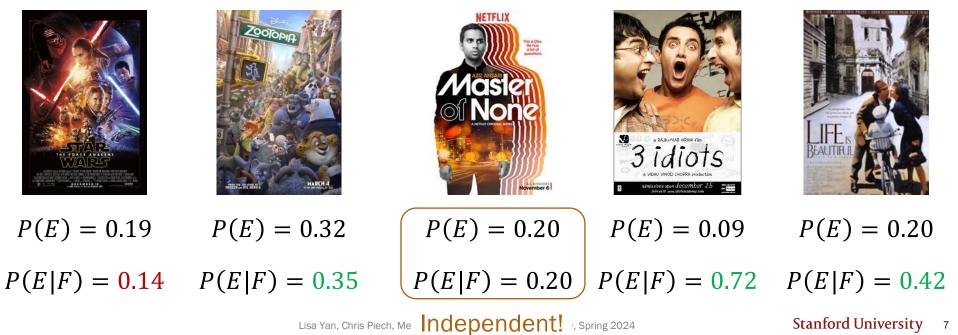
What is the probability that a user watches Life is Beautiful, given they watched Amelie?

 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$

Netflix and Condition

Let *E* be the event that a user watches the given movie. Let *F* be the event that the same user watches Amelie.

Review



Netflix and Condition (on many movies)

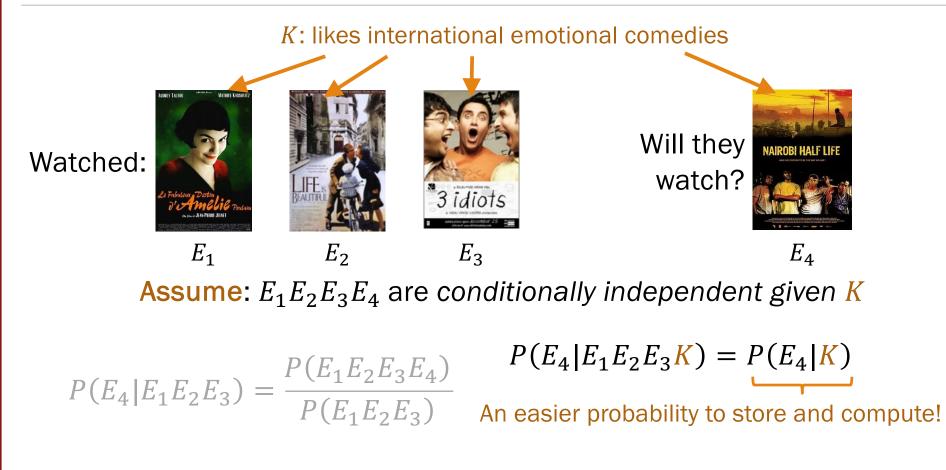
What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

 $P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\# \text{ people who have watched all 4}}{\# \text{ people who have watched those 3}}$

We need to keep track of an exponential number of movie-watching statistics

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Netflix and Condition (on many movies)



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Netflix and Condition

K: likes international emotional comedies

Challenge: How do we determine *K*? Stay tuned in 6 weeks' time!

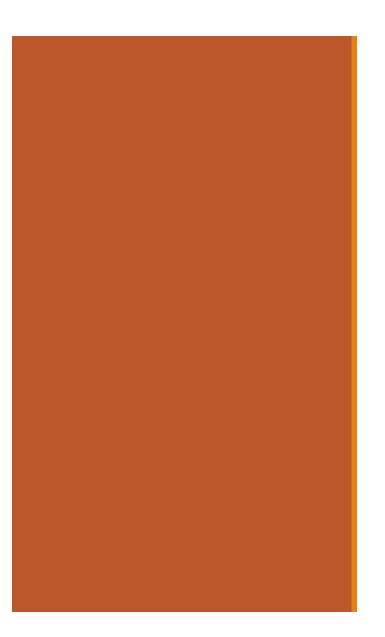
 $E_1E_2E_3E_4$ are dependent

 $E_1E_2E_3E_4$ are conditionally independent given K

 E_4

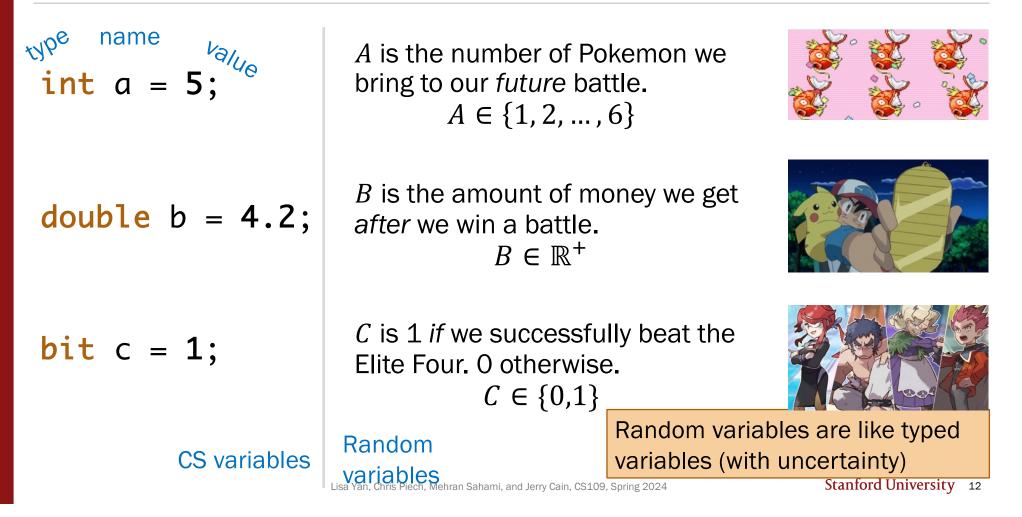
Dependent events can be conditionally independent. (And vice versa: Independent events can be conditionally dependent.)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024



Random Variables

Random variables are like typed variables



Random Variable

A random variable is a real-valued function defined on a sample space.



Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
 - (T,T,T)?
 - (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?
- 3. What is P(X = 2)?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1.** What is the value of *X* for the outcomes:
 - (T,T,T)?
 - (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?

3. What is P(X = 2)?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

Example:

3 coins are flipped. Let *X* = # of heads. *X* is a **random variable**.

X = 2

event

P(X = 2)

probability (number b/t 0 and 1)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

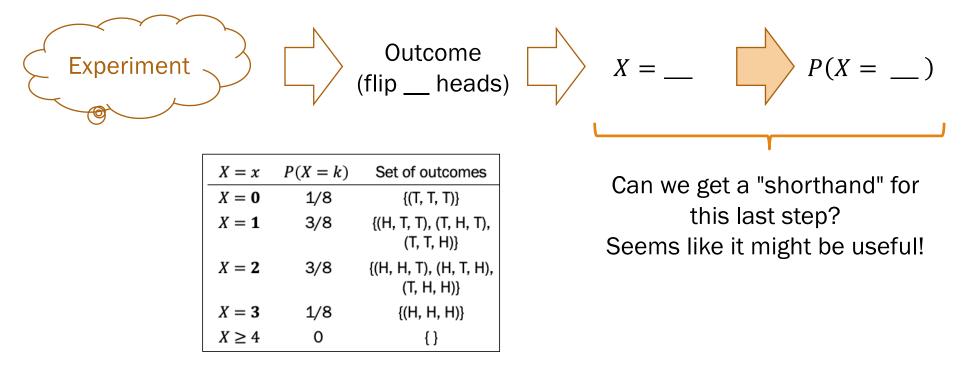
	X = x	Set of outcomes	P(X=k)
Example:	X = 0	{(T, T, T)}	1/8
	X = 1	{(H, T, T), (T, H, T), (T, T, H)}	3/8
3 coins are flipped. Let $X = #$ of heads.	<i>X</i> = 2	{(H, H, T), (H, T, H), (T, H, H)}	3/8
X is a random variable.	X = 3	{(H, H, H)}	1/8
	$X \ge 4$	{ }	0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

PMF/CDF

So far

3 coins are flipped. Let X = # of heads. X is a random variable.



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

parameter/input k

A function on k with range [0,1]

return value/output P(X = k)number between 0 and 1

What would be a *useful* function to define? The probability of the event that a random variable *X* takes on the value *k*! For **discrete random variables**, this is a **probability mass function**.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Probability Mass Function

A function on k

with range [0,1]

3 coins are flipped. Let X = # of heads. X is a random variable.

$$P(X = 2) \longrightarrow 0.375$$

$$return value/output:$$

$$P(X = 2) \longrightarrow 0.375$$

$$return value/output:$$

$$return value/output:$$

$$X = 2$$

```
def prob_x(n, k, p):
    n_ways = math.comb(n, k)
    p_way = p ** k * (1 - p) ** (n - k)
    return n_ways * p_way
```

prob

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values. • X = x, where $x \in \{x_1, x_2, x_3, ...\}$

The probability mass function (PMF) of a discrete random variable is $P(X = x) = p(x) = p_X(x)$

shorthand notation

Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

This last point is a good way to verify any PMF you create is valid

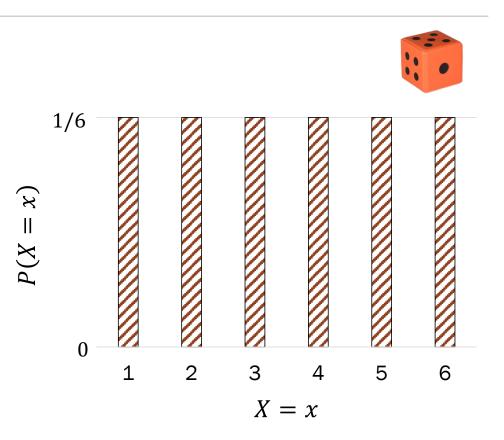
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

PMF for a single 6-sided die

Let *X* be a random variable that represents the result of a single dice roll.

- Support of *X* : {1, 2, 3, 4, 5, 6}
- Therefore, *X* is a discrete random variable.
- PMF of X:

$$p(x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$



Cumulative Distribution Functions

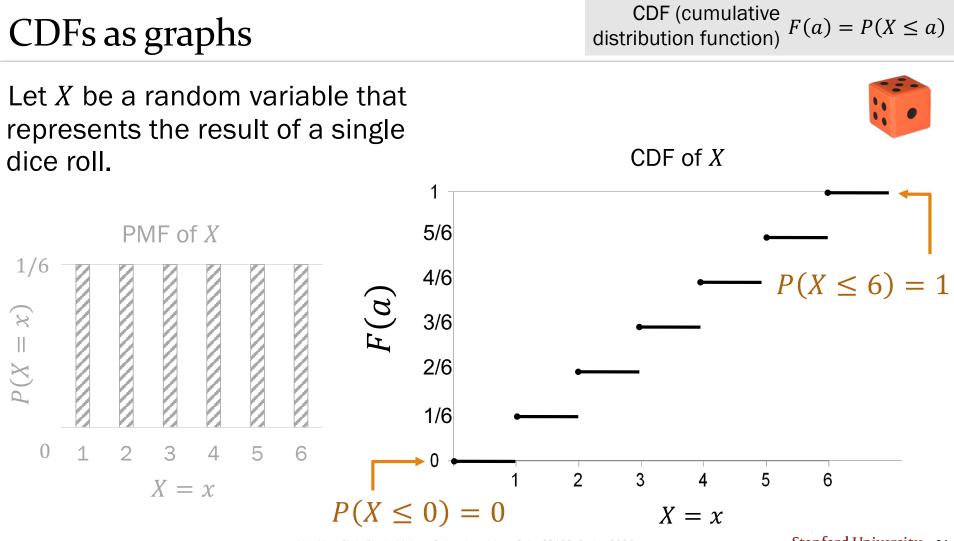
For a random variable *X*, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where $-\infty < a < \infty$

For a discrete RV *X*, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

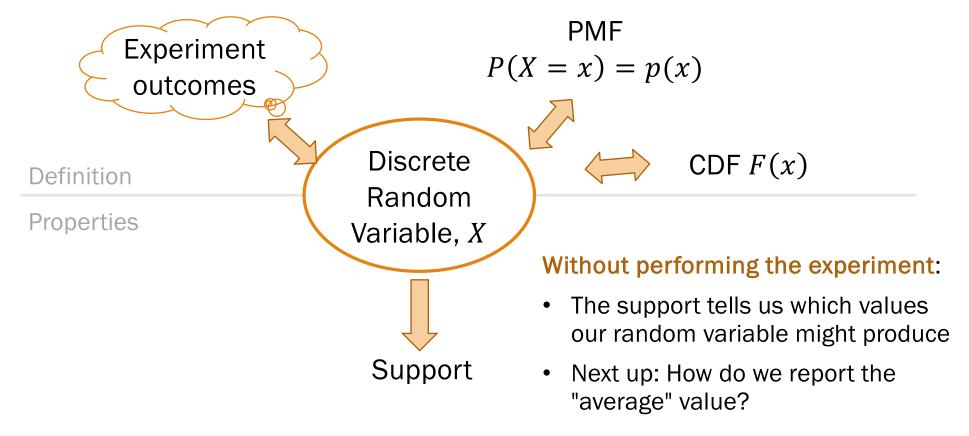
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Expectation

Discrete random variables



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Expectation

The expectation of a discrete random variable *X* is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of X = x that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Expectation of a die roll

What is the expected value of a 6-sided die roll?

1. Define random variables

$$X = \mathsf{RV}$$
 for value of roll

$$P(X = x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve

$$E[X] = 1 \left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 28

Expectation of *X*

 $E[X] = \sum p(x) \cdot x$

Important properties of expectation

1. Linearity:

$$E[aX+b] = aE[X] + b$$

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y] • Let X = 6-sided dice roll, Y = 2X - 1.

•
$$E[X] = 3.5$$

•
$$E[Y] = 6$$

Sum of two dice rolls:

- Let X = roll of die 1 Y = roll of die 2
- E[X + Y] = 3.5 + 3.5 = 7

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

These properties let you avoid defining difficult PMFs.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 $\,$

Linearity of Expectation proof

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

E[aX+b] = aE[X]+b

Proof:

$$E[aX + b] = \sum_{x} (ax + b)p(x) = \sum_{x} axp(x) + bp(x)$$
$$= a \sum_{x} xp(x) + b \sum_{x} p(x)$$
$$= a E[X] + b \cdot 1$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Expectation of Sum intuition

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

	E[X +	[Y] = E[X]	X] + E[Y]	we'll prove this in a few lectures
Intuition	Х	Y	X + Y	
for now:	3	6	9	
	2	4	6	
	6	12	18	
	10	20	30	
	-1	-2	-3	
	0	0	0	
_	8	16	24	
Average:	$n \sum_{i=1}^{n}$	$+ \frac{1}{n} \sum_{i=1}^{n} y_{i} = $ $+ \frac{1}{7} (56) =$	$\frac{1}{n} \sum_{i=1}^{n} (x_i + y_i)$ $\frac{1}{7} (84)$	

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

LOTUS proof

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation
of $g(X)$

Let Y = g(X), where g is a real-valued function. $E[g(X)] = E[Y] = \sum_{i} y_{j} p(y_{j})$ $= \sum_{j}^{J} y_j \sum_{i:g(x_i)=y_j} p(x_i)$ $= \sum_{j} \sum_{i:g(x_i)=y_j} y_j p(x_i)$ $= \sum_{j} \sum_{i:g(x_i)=y_j} g(x_i) p(x_i)$ $=\sum g(x_i) p(x_i)$ Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Lisa Yan, Chris

For you to review so that you can sleep tonight! Stanford University 32

Exercises

A Whole New World with Random Variables

Event-driven probability

- Relate only binary events
 - Either something happens (E)
 - or it doesn't happen (E^{C})
- Can only report probability
- Lots of combinatorics

Random Variables

- Link multiple similar events together (X = 1, X = 2, ..., X = 6)
- Can compute statistics: report the "average" outcome
- Once we have the PMF (for discrete RVs), we can do regular math

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of *Y*? In other words, what are the values that *Y* can take on with non-zero probability?
- 2. Define the event Y = 2. What is P(Y = 2)?

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability? $\{0, 1, 2, 3, 4, 5\}$
- 2. Define the event Y = 2. What is P(Y = 2)? $P(Y = 2) = {\binom{5}{2}}p^2(1-p)^3$

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y? $P(Y = k) = {5 \choose k} p^k (1-p)^{5-k}$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- 1. Interpretation #1
- Randomly choose a <u>class</u> with equal probability.
- X = size of chosen class

$$E[X] = 5\left(\frac{1}{3}\right) + 10\left(\frac{1}{3}\right) + 150\left(\frac{1}{3}\right)$$
$$= \frac{165}{3} = 55$$

- 2. Interpretation #2
- Randomly choose a <u>student</u> with equal probability.
- Y =size of chosen class

$$E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right)$$
$$= \frac{22635}{165} \approx 137$$

What alumni relations usually reports

 Ily reports
 Average student perception of class size

 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
 Stanford University
 37

Being a statistician unconsciously

Let *X* be a discrete random variable.

• $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let Y = |X|. What is E[Y]?

- A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$
- $\mathsf{B.} \quad E[Y] = E[0] \qquad \qquad = 0$
- **C.** $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$
- D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3}|1| = \frac{2}{3}$
- E. C and D

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Expectation

of a(X)

 $E[g(X)] = \sum g(x)p(x)$

Being a statistician unconsciously

Let *X* be a discrete random variable. • $P(X = x) = \frac{1}{2}$ for $x \in \{-1, 0, 1\}$ Let Y = |X|. What is E[Y]? A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$ × E[X] $= 0 \quad \mathbf{X} \quad E[E[X]]$ B. E[Y] = E[0] $= \frac{2}{3}$ 1. Find PMF of Y: $p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3}$ 2. Compute E[Y]C. $\frac{1}{2} \cdot 0 + \frac{2}{2} \cdot 1$ D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$ E. C and D Use LOTUS by using PMF of X: 1. $P(X = x) \cdot |x|$ 2. Sum up

 $E[g(X)] = \sum g(x)p(x)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 39

Expectation

of g(X)