o6: Random Variables

Jerry Cain
April $12^{\text {th }}, 2024$

Lecture Discussion on Ed

Conditional Independence

Conditional Paradigm

For any events A, B, and E , you can condition consistently on E , and all formulas still hold: when in dubs hen simply

Axiom 1
Corollary 1 (complement)
Transitivity
Chain Rule

Bayes' Theorem

$$
\begin{aligned}
& 0 \leq P(A \mid E) \leq 1 \\
& P(A \mid E)=1-P\left(A^{C} \mid E\right) \\
& P(A B \mid E)=P(B A \mid E) \\
& P(A B \mid E)=P(B \mid E) P(A \mid B E) \\
& P(A \mid B E)=\frac{P(B \mid A E) P(A \mid E)}{P(B \mid E)} \\
& \text { reduces to an } \\
& \text { unconditornal one }
\end{aligned}
$$

Conditional Independence

Independent

events E and $F$$\Rightarrow$| $P(E F)=P(E) P(F)$ |
| ---: |
| $P(E \mid F)=P(E)$ |

Two events A and B are defined as conditionally independent given E if:

$$
P(A B \mid E)=P(A \mid E) P(B \mid E)
$$

An equivalent definition:

$$
\begin{aligned}
& \text { A. } P(A \mid B)=P(A) \\
& \text { B. } P(A \mid B E)=P(A) \\
& \text { C. } P(A \mid B E)=P(A \mid E)
\end{aligned}
$$

Conditional Independence

Two events A and B are defined as conditionally independent given E if:

$$
P(A B \mid E)=P(A \mid E) P(B \mid E)
$$

An equivalent definition:

Netflix and Condition

Let $E=$ a user watches Life is Beautiful.
Let $F=$ a user watches Amelie.
What is $P(E)$?

$$
P(E) \approx \frac{\# \text { people who have watched movie }}{\# \text { people on Netflix }}=\frac{10,234,231}{50,923,123} \approx 0.20
$$

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{\# \text { people who have watched both }}{\# \text { people who have watched Amelie }} \approx 0.42
$$

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$P(E)=0.19$
$P(E \mid F)=0.14$

$P(E)=0.32$
$P(E \mid F)=0.35$

$$
\begin{gathered}
P(E)=0.20 \\
P(E \mid F)=0.20
\end{gathered}
$$

- Independent!

$P(E)=0.09$

$$
P(E \mid F)=0.72
$$

$P(E \mid F)=0.72$
Spring 2024
$P(E)=0.20$

$P(E \mid F)=0.42$

Netflix and Condition (on many movies)

Watched:

E_{2}

E_{3}

What if $E_{1} E_{2} E_{3} E_{4}$ are not independent? (e.g., all international emotional comedies)

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=\frac{P\left(E_{1} E_{2} E_{3} E_{4}\right)}{P\left(E_{1} E_{2} E_{3}\right)}=\frac{\text { \# people who have watched all } 4}{\# \text { people who have watched those } 3}
$$

We need to keep track of an exponential number of movie-watching statistics

Netflix and Condition (on many movies)

Watched:

Assume: $E_{1} E_{2} E_{3} E_{4}$ are conditionally independent given K

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=\frac{P\left(E_{1} E_{2} E_{3} E_{4}\right)}{P\left(E_{1} E_{2} E_{3}\right)}
$$

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3} K\right)=P\left(E_{4} \mid K\right)
$$

An easier probability to store and compute!

Netflix and Condition

Dependent events can be conditionally independent. (And vice versa: Independent events can be conditionally dependent.)

Random Variables

Random variables are like typed variables

$$
\text { double } b=4.2 \text {; }
$$

bit c = 1;

CS variables
A is the number of Pokemon we bring to our future battle.

$$
A \in\{1,2, \ldots, 6\}
$$

B is the amount of money we get after we win a battle.
$B \in \mathbb{R}^{+}$
C is 1 if we successfully beat the Elite Four. 0 otherwise.
$C \in\{0,1\}$
Random
Variabales
Random variables are like typed variables (with uncertainty)

Random Variable

A random variable is a real-valued function defined on a sample space.

Outcome

$X=k$

Example:
3 coins are flipped.
Let $X=$ \# of heads.
X is a random variable.

1. What is the value of X for the outcomes:

- (T,T,T)?
- $(\mathrm{H}, \mathrm{H}, \mathrm{T})$?

2. What is the event (set of outcomes) where $X=2$?
3. What is $P(X=2)$?

Random Variable

A random variable is a real-valued function defined on a sample space.

Outcome

$X=k$

Example:
3 coins are flipped.
Let $X=\#$ of heads.
X is a random variable.

1. What is the value of X for the outcomes:

- $(T, T, T) ? \quad X=0$
- $(H, H, T) ? \quad X=2$

2. What is the event (set of outcomes) where $X=2$?

$$
\{(H, H, T),(H, T, H),(T, H, H)\}
$$

3. What is $P(X=2) ? P(X=2)=\frac{3}{8}$ \qquad

Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables \neq events.
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

$$
\text { i.e. } P(x=2) \text { or } P(x>0)
$$

Example:
3 coins are flipped.
Let $X=$ \# of heads.
X is a random variable.

$$
\begin{gathered}
X=2 \\
\text { event }
\end{gathered}
$$

$P(X=2)$
probability
(number b/t 0 and 1)

Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables \neq events.
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

Example:

$X=x$	Set of outcomes	$P(X=k)$
$X=\mathbf{0}$	$\{(\mathrm{T}, \mathrm{T}, \mathrm{T})\}$	$1 / 8$
$X=\mathbf{1}$	$\{(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{T})$,	$3 / 8$

3 coins are flipped.
Let $X=\#$ of heads.
$X=2 \quad(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H})$,
$3 / 8 \leftarrow$ just cmputal (T, H, H) \}
X is a random variable.

$$
\begin{aligned}
& x=\mathbf{3} \\
& x \geq 4
\end{aligned}
$$

$\{(\mathrm{H}, \mathrm{H}, \mathrm{H})\}$
\{ \}

1/8

PMF/CDF

So far

3 coins are flipped. Let $X=\#$ of heads. X is a random variable.
1 went with 2 , but it unld be ang value at all in the suppnt of X.

$X=x$	$P(X=k)$	Set of outcomes
$X=\mathbf{0}$	$1 / 8$	$\{(\mathrm{~T}, \mathrm{~T}, \mathrm{~T})\}$
$X=\mathbf{1}$	$3 / 8$	$\{(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{T})$,
		$(\mathrm{T}, \mathrm{T}, \mathrm{H})\}$
$X=\mathbf{2}$	$3 / 8$	$\{(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H})$,
		$(\mathrm{T}, \mathrm{H}, \mathrm{H})\}$
$X=\mathbf{3}$	$1 / 8$	$\{(\mathrm{H}, \mathrm{H}, \mathrm{H})\}$
$X \geq 4$	0	$\}$

Can we get a "shorthand" for this last step?
Seems like it might be useful!

Probability Mass Function

3 coins are flipped. Let $X=\#$ of heads. X is a random variable. parameter/input k

A function on k with range $[0,1]$

What would be a useful function to define?
The probability of the event that a random variable X takes on the value k ! For discrete random variables, this is a probability mass function.

Probability Mass Function

3 coins are flipped. Let $X=\#$ of heads. X is a random variable.
2 parameter/input k : a value of X
A function on k with range [0,1]

$$
P(X=2) \quad \underbrace{0.375}_{\begin{array}{l}
\text { return value/output: } \\
\text { probability of the event } \\
\\
X=2
\end{array}}
$$

```
probability mass function
    def prob_x(n, k, p):
    n_ways = math.comb (n, k)
    p_way = p ** k * (1 - p) ** (n - k)
    return n_ways * p_way
```


Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values.

- $X=x$, where $x \in\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

The probability mass function (PMF) of a discrete random variable is

$$
P(X=x)=p(x)=p_{X}(x)
$$

- Probabilities must sum to 1 :

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

This last point is a good way to verify any PMF you create is valid

PMF for a single 6-sided die

Let X be a random variable that represents the result of a single dice roll.

- Support of $X:\{1,2,3,4,5,6\}$
- Therefore, X is a discrete random variable.
- PMF of X :

$$
p(x)=\left\{\begin{array}{cl}
1 / 6 & x \in\{1, \ldots, 6\} \\
0 & \text { otherwise }
\end{array}\right.
$$

Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is defined as

$$
F(a)=F_{X}(a)=P(X \leq a), \text { where }-\infty<a<\infty
$$

For a discrete RV X, the CDF is:

$$
F(a)=P(X \leq a)=\sum_{\text {all } x \leq a} p(x)
$$

CDFs as graphs

CDF (cumulative distribution function) $F(a)=P(X \leq a)$

Let X be a random variable that represents the result of a single dice roll.

CDF of X
$F(b)=$

PMF of X

$$
P(X \leq 0)=0 \quad X=x
$$

Expectation

Discrete random variables

Expectation

The expectation of a discrete random variable X is defined as:

$$
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
$$

- Note: sum over all values of $X=x$ that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

Expectation of a die roll

$$
E[X]=\sum_{x, p(x)>0} p(x) \cdot x \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } X
\end{aligned}
$$

What is the expected value of a 6 -sided die roll?

1. Define random variables

$$
X=\mathrm{RV} \text { for value of roll }
$$

$$
P(X=x)=\left\{\begin{array}{cl}
1 / 6 & x \in\{1, \ldots, 6\} \\
0 & \text { otherwise }
\end{array}\right.
$$

2. Solve

$$
E[X]=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)=\frac{7}{2}
$$

Important properties of expectation

1. Linearity:

$$
E[a X+b]=a E[X]+b
$$

- Let $X=6$-sided dice roll,
- $E[X]=3.5$
- $E[Y]=6$

2. Expectation of a sum = sum of expectation:

$$
E[X+Y]=E[X]+E[Y]
$$

Sum of two dice rolls:

- Let $X=$ roll of die 1
$Y=$ roll of die 2
- $E[X+Y]=3.5+3.5=7$

3. Unconscious statistician:

$$
E[g(X)]=\sum_{x} g(x) p(x)
$$

These properties let you avoid defining difficult PMFs.

Linearity of Expectation proof

$$
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
$$

$$
E[a X+b]=a E[X]+b
$$

Proof:

$$
\begin{aligned}
E[a X+b] & =\sum_{x}(a x+b) p(x)=\sum_{x} a x p(x)+b p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a E[X]+b \cdot 1
\end{aligned}
$$

Expectation of Sum intuition

$$
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
$$

	$E[X$		$=E$	$E[X$	$Y]+E[Y]$
Intuition	X		Y		$X+Y$
for now:	3		6		9
	2		4		6
	6		12		18
	10		20		30
	-1		-2		-3
	0		0		0
	8		16		24
Average:	$\frac{1}{n} \sum_{i=1}^{n} x_{i}$		$\frac{1}{n} \sum_{i=1}^{n} y_{i}$	$=$	$\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}+y_{i}\right)$
	$\frac{1}{7}(28)$	$+$	$\frac{1}{7}(56)$	$=$	$\frac{1}{7}(84)$

LOTUS proof

$$
E[g(X)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
$$

Let $Y=g(X)$, where g is a real-valued function.

$$
\begin{aligned}
E[g(X)]=E[Y] & =\sum_{j} y_{j} p\left(y_{j}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{\text {and }} g\left(x_{i}\right) p\left(x_{i}\right)
\end{aligned}
$$

Exercises

A Whole New World with Random Variables

Event-driven probability

- Relate only binary events
- Either something happens (E)
- or it doesn't happen (E^{C})
- Can only report probability
- Lots of combinatorics

Random Variables

- Link multiple similar events together $(X=1, X=2, \ldots, X=6)$
- Can compute statistics: report the "average" outcome
- Once we have the PMF (for discrete RVs), we can do regular math

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let $\boldsymbol{Y}=\#$ of heads on 5 flips.

1. What is the support of Y ? In other words, what are the values that Y can take on with non-zero probability?
2. Define the event $Y=2$. What is $P(Y=2)$?
3. What is the PMF of Y ? In other words, what is $P(Y=k)$, for k in the support of Y ?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let $\boldsymbol{Y}=\#$ of heads on 5 flips.

1. What is the support of Y ? In other words, what are the values that Y can take on with non-zero probability?
2. Define the event $Y=2$. What is $P(Y=2)$? $\quad P(Y=2)=\binom{5}{2} p^{2}(1-p)^{3}$
3. What is the PMF of Y ? In other words, what is $P(Y=k)$, for k in the support of Y ?

$$
P(Y=k)=\binom{5}{k} p^{k}(1-p)^{5-k}
$$

Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

1. Interpretation \#1

- Randomly choose a class with equal probability.
- $X=$ size of chosen class

$$
\begin{aligned}
E[X] & =5\left(\frac{1}{3}\right)+10\left(\frac{1}{3}\right)+150\left(\frac{1}{3}\right) \\
& =\frac{165}{3}=55
\end{aligned}
$$

What alumni relations usually reports
2. Interpretation \#2

- Randomly choose a student with equal probability.
- $Y=$ size of chosen class
$E[Y]=5\left(\frac{5}{165}\right)+10\left(\frac{10}{165}\right)+150\left(\frac{150}{165}\right)$
$=\frac{22635}{165} \approx 137$

Average student perception of class size

Being a statistician unconsciously

$$
E[g(X)]=\sum_{x} g(x) p(x) \quad \begin{gathered}
\text { Expectation } \\
\text { of } g(X)
\end{gathered}
$$

Let X be a discrete random variable.

- $P(X=x)=\frac{1}{3}$ for $x \in\{-1,0,1\}$

Let $Y=|X|$. What is $E[Y]$?
A. $\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot-1=0$
B. $E[Y]=E[0]=0$
C. $\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1=\frac{2}{3}$
D. $\frac{1}{3} \cdot|-1|+\frac{1}{3} \cdot|0|+\frac{1}{3}|1|=\frac{2}{3}$
E. C and D

Being a statistician unconsciously
 $$
E[g(X)]=\sum_{x} g(x) p(x) \quad \begin{aligned} & \text { Expectation } \\ & \text { of } g(X) \end{aligned}
$$

Let X be a discrete random variable.

- $P(X=x)=\frac{1}{3}$ for $x \in\{-1,0,1\}$

Let $Y=|X|$. What is $E[Y]$?

$$
\begin{array}{lll}
\text { A. } \frac{1}{3} \cdot 1+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot-1 & =0 & \text { X }_{E[X]} \\
\text { B. } E[Y]=E[0] & =0 & \text { X }_{E[E[X]]}
\end{array}
$$

C. $\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1$

$$
=\frac{2}{3} \quad \begin{cases}\text { 1. } & \text { Find PMF of } Y: \\ 2 . & \text { Compute } E[Y]\end{cases}
$$

D. $\frac{1}{3} \cdot|-1|+\frac{1}{3} \cdot|0|+\frac{1}{3}|1|=\frac{2}{3} \quad\left\{\begin{array}{l}\text { Use LOTUS by using } \\ \text { 1. } P(X=x) \cdot|x| \\ 2 .\end{array}\right.$
2. Sum up

