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Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F

Washington, DC
𝐸 high = 67°F
𝐸 low = 51°F
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Average	temperatures

Is	𝐸 𝑋 	enough?	Does	is	capture	everything?
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Average	temperatures
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Normalized histograms are approximations of probability mass functions, i.e., PMFs.
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Variance	=	measure	of	"spread"
Consider the following three distributions (PMFs):

• Expectation: 𝐸 𝑋 = 3	for all distributions
• But the shape and spread across distributions are very different!
• Variance, Var 𝑋 	: a formal quantification of spread
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Variance

The variance of a random variable 𝑋 with mean 𝐸 𝑋 = 𝜇 is

Var 𝑋 = 𝐸 𝑋 − 𝜇 (

• Also written as: 𝐸 𝑋 − 𝐸 𝑋 !

• Note: Var(X) ≥ 0
• Other names: 2nd central moment, or square of the standard deviation

       Var 𝑋

def standard deviation SD 𝑋 = Var 𝑋
6

Units of 𝑋!

Units of 𝑋
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Variance	of	Stanford	weather
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Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

Stanford, CA
𝐸 high = 68°F
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Variance 𝐸 𝑋 − 𝜇 ! = 39 (°F)2

Standard deviation     = 6.2°F
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Stanford, CA
𝐸 high = 68°F

Washington, DC
𝐸 high = 67°F
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Comparing	variance
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Properties	of	
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Properties	of	variance
Definition     Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1  Var 𝑋 = 𝐸 𝑋!  − 𝐸 𝑋 !

Property 2  Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋

10

Units of 𝑋!

Units of 𝑋

• Property 1 is often easier to manipulate than the original definition
• Unlike expectation, variance is not linear
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Properties	of	variance
Definition     Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1  Var 𝑋 = 𝐸 𝑋!  − 𝐸 𝑋 !

Property 2  Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋
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Units of 𝑋!

Units of 𝑋
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Computing	variance,	a	proof

12

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝜇!
= 𝐸 𝑋! − 2𝜇! + 𝜇!
= 𝐸 𝑋! − 2𝜇𝐸 𝑋 + 𝜇!

= 𝐸 𝑋 − 𝜇 ! Let 𝐸 𝑋 = 𝜇

Everyone, 
please 

welcome the 
second 

moment!

Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋!  − 𝐸 𝑋 !

=,
"

𝑥 − 𝜇 !𝑝 𝑥

=,
"

𝑥! − 2𝜇𝑥 + 𝜇! 𝑝 𝑥

=,
"

𝑥!𝑝 𝑥 − 2𝜇,
"

𝑥𝑝 𝑥 + 𝜇!,
"

𝑝 𝑥

⋅ 1
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Let Y = outcome of a single die roll. Recall 𝐸 𝑌 = 7/2 .
Calculate the variance of Y. 
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Variance	of	a	6-sided	die
Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋!  − 𝐸 𝑋 !

1.  Approach #1: Definition

Var 𝑌 = 	
1
6
1 −

7
2

!
+
1
6
2 −

7
2

!

	 +
1
6
3 −

7
2

!
+
1
6
4 −

7
2

!

	 +
1
6
5 −

7
2

!
+
1
6
6 −

7
2

!

2.  Approach #2: A property

𝐸 𝑌! =
1
6
1! + 2! + 3! + 4! + 5! + 6!

= 91/6

Var 𝑌 = E 𝑌! − E Y ! = 91/6 − 7/2 !

= 35/12 = 35/12

2nd  moment
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Properties	of	variance
Definition     Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1  Var 𝑋 = 𝐸 𝑋!  − 𝐸 𝑋 !

Property 2  Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋
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Units of 𝑋!

Units of 𝑋
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Property	2:	A	proof
Property 2  Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋
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Var 𝑎𝑋 + 𝑏 	
 = 𝐸 𝑎𝑋 + 𝑏 ! − 𝐸 𝑎𝑋 + 𝑏 !      Property 1 
 = 𝐸 𝑎!𝑋! + 2𝑎𝑏𝑋 + 𝑏! − 𝑎𝐸 𝑋 + 𝑏 ! 
 = 𝑎!𝐸 𝑋! + 2𝑎𝑏𝐸 𝑋 + 𝑏! − 𝑎! 𝐸[𝑋] ! + 2𝑎𝑏𝐸[𝑋] + 𝑏!

 = 𝑎!𝐸 𝑋! − 𝑎! 𝐸[𝑋] !

 = 𝑎! 𝐸 𝑋! − 𝐸[𝑋] !

 = 𝑎!Var 𝑋            Property 1 

Proof:

Factoring/
Linearity of 
Expectation
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Other	Moments	of	Interest
Skewness: Sometimes referred to as the 3rd central moment and 

computed as 𝐸 𝑋 − 𝐸 𝑋 ) , skewness provides a 
measure of whether a probability distribution is 
symmetric or asymmetric.

Kurtosis: Sometimes referred to as the 4th central moment and 
computed as 𝐸 𝑋 − 𝐸 𝑋 * , kurtosis provides a 
measure of how concentrated the distribution is.  Some 
distributions are so dispersed they don’t have finite 
variances or means.
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[image source]

https://www.sciencedirect.com/topics/social-sciences/kurtosis


Bernoulli	RV
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Consider an experiment with two outcomes: "success" and "failure".
def A Bernoulli random variable 𝑋	maps "success" to 1 and "failure" to 0.
 Other names: indicator random variable, Boolean random variable

Examples:
• Coin flip
• Random binary digit
• Whether Doris barks

Bernoulli	Random	Variable

18

𝑃 𝑋 = 1 = 𝑝 1 = 𝑝	
𝑃 𝑋 = 0 = 𝑝 0 = 1 − 𝑝	𝑋~Ber(𝑝)

Support: {0,1} Variance  
Expectation   

PMF

𝐸 𝑋 = 𝑝 
Var 𝑋 = 𝑝(1 − 𝑝) 
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Defining	Bernoulli	RVs

19

Serve an ad.
• User clicks w.p. 0.2
• Ignores otherwise

Let 𝑋: 1 if clicked

𝑋~Ber(___)
𝑃 𝑋 = 1 = 	 ___
𝑃 𝑋 = 0 = 	 ___

Roll two dice.
• Success: roll a 10
• Failure: anything else

Let 𝑋	: 1 if success

𝑋~Ber(___)

𝐸 𝑋 = ___

𝑋~Ber(𝑝) 𝑝" 1 = 𝑝 
𝑝" 0 = 1 − 𝑝 𝐸 𝑋 = 𝑝 

Run a program
• Crashes w.p. 𝑝
• Works w.p. 1 − 𝑝

Let 𝑋: 1 if crash

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝



Binomial	RV
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Consider an experiment: 𝑛 independent Ber(𝑝) trials.
def A Binomial random variable 𝑋	counts the successes across 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial	Random	Variable

21

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!𝑋~Bin(𝑛, 𝑝)

Support: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝 
Var 𝑋 = 𝑛𝑝(1 − 𝑝) Variance  

Expectation   
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Reiterating	notation

The parameters of a Binomial random variable:
• 𝑛: number of independent trials
• 𝑝: probability of success on each trial

22

1. The random 
variable

2. is distributed 
as a

3. Binomial 4. with parameters

𝑋	~	Bin(𝑛, 𝑝)



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Reiterating	notation

If 𝑋 is a binomial with parameters 𝑛 and 𝑝, the PMF of 𝑋 is

23

𝑋	~	Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝( 1 − 𝑝 )*(

Probability Mass Function for a BinomialProbability that 𝑋
takes on the value 𝑘



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Three	coin	flips
Three fair (with 𝑝 = 0.5) coins are flipped.
• 𝑋 is number of heads
• 𝑋~Bin 3, 0.5

Compute the following event probabilities:

24

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝑃 𝑋 = 0

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

P(event)
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Three	coin	flips
Three fair (with 𝑝 = 0.5) coins are flipped.
• 𝑋 is number of heads
• 𝑋~Bin 3, 0.5

Compute the following event probabilities:
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝑃 𝑋 = 0 = 𝑝 0 	 = 3
0 𝑝$ 1 − 𝑝 % = &

'
 

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

= 𝑝 1 	 = 3
1 𝑝& 1 − 𝑝 ! = %

'
 

= 𝑝 2 	 = 3
2 𝑝! 1 − 𝑝 & = %

'
 

= 𝑝 3 	 = 3
3 𝑝% 1 − 𝑝 $ = &

'
 

P(event)
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋	is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial	Random	Variable

26

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛} Variance  

Expectation   

PMF

𝐸 𝑋 = 𝑛𝑝 
Var 𝑋 = 𝑛𝑝(1 − 𝑝) 

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!
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Ber 𝑝 = Bin(1, 𝑝)

Binomial	RV	is	sum	of	Bernoulli	RVs

Bernoulli
• 𝑋~Ber(𝑝)

Binomial
• 𝑌~Bin 𝑛, 𝑝
• The sum of 𝑛 independent 

Bernoulli RVs

27

𝑌 =,
()&

*

𝑋( , 	𝑋( ~Ber(𝑝)

+

+

+
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋	is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial	Random	Variable

28

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

𝐸 𝑋 = 𝑛𝑝 
Var 𝑋 = 𝑛𝑝(1 − 𝑝) Variance  

Expectation   

PMF 𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋	is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial	Random	Variable

29

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝 
Var 𝑋 = 𝑛𝑝(1 − 𝑝) 

We’ll prove 
this later in 
the course.

Variance  
Expectation   

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!



Exercises
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Statistics:	Expectation	and	variance
1. a. Let 𝑋 = the outcome of a fair 24-sided

 die roll. What is 𝐸 𝑋 ?
b. Let 𝑌 = the sum of seven rolls of a fair

24-sided die. What is 𝐸 𝑌 ?

2. Let 𝑍 = # of tails on 10 flips of a 
biased coin, with p = 0.71. What is 𝐸 𝑍 ?

3. Compare the variances of 
𝐵4~Ber 0.0 , 𝐵5~Ber 0.1 ,
𝐵!~Ber 0.5 , and 𝐵)~Ber(0.9).

31
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Statistics:	Expectation	and	variance
1. a. Let 𝑋 = the outcome of a fair 24-sided

 die roll. What is 𝐸 𝑋 ?
b. Let 𝑌 = the sum of seven rolls of a fair

24-sided die. What is 𝐸 𝑌 ?

2. Let 𝑍 = # of tails on 10 flips of a 
biased coin, with p = 0.71. What is 𝐸 𝑍 ?

3. Compare the variances of 
𝐵4~Ber 0.0 , 𝐵5~Ber 0.1 ,
𝐵!~Ber 0.5 , and 𝐵)~Ber(0.9).
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If you can identify common RVs, just look up 
statistics instead of rederiving from scratch.
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Visualizing	Binomial	PMFs

33
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Visualizing	Binomial	PMFs
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Match the distribution 
of 𝑋 to the graph:
1.  Bin 10, 0.5
2.  Bin 10, 0.3
3.  Bin 10, 0.7
4.  Bin 5, 0.5
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Galton	Board

35

0 1 2 3 4 5

http://cs109.stanford.edu/demos/galton.html

http://cs109.stanford.edu/demos/galton.html
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Galton	Board

36

When a marble hits a pin, it has an equal 
chance of going left or right.

Let 𝐵 = the bucket index a ball drops into.
What is the distribution of 𝐵?

0 1 2 3 4 5

𝑛 = 5

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

(Interpret: If 𝐵 is a common 
random variable, report it, 

otherwise report PMF)
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Galton	Board

37

When a marble hits a pin, it has an equal 
chance of going left or right.

Let 𝐵 = the bucket index a ball drops into.
What is the distribution of 𝐵?

0 1 2 3 4 5

𝑛 = 5

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

• Each pin is an independent trial
• One decision made for level 𝑖 = 1, 2, . . , 5
• Consider a Bernoulli RV with success 𝑅( 	if 

ball went right on level 𝑖

• Bucket index 𝐵 =  # times ball went right

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)
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Galton	Board

38

When a marble hits a pin, it has an equal 
chance of going left or right.

Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5

𝑃 𝐵 = 0 = 5
0 0.50 ≈ 0.03 

𝑃 𝐵 = 1 = 5
1 0.50 ≈ 0.16 

𝑃 𝐵 = 2 = 5
2 0.50 ≈ 0.31 

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

PMF of Binomial RV!
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Genetics	and	NBA	Finals
1. Each parent has 2 genes per trait (e.g., eye color).
• Child inherits 1 gene from each parent with equal likelihood.
• Brown eyes are "dominant", blue eyes are "recessive":
• Child has brown eyes if either or both genes for brown eyes are inherited.
• Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)

• Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.
Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

2. Let’s speculate that the Boston Celtics will play the Oklahoma City
Thunder in a 7-game series during the 2024 NBA finals this June.

• The Celtics have a probability of 81% of winning each game, independently.
• A team wins if they win at least 4 games (we’ll assume they play all 7 games).

What is P(Celtics winning)?
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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Genetic	inheritance
1. Each parent has 2 genes per trait (e.g., eye color).
• Child inherits 1 gene from each parent with equal likelihood.
• Brown eyes are "dominant", blue eyes are "recessive":
• Child has brown eyes if either or both genes for brown eyes are inherited.
• Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)

• Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.
Two parents have 4 children. What is P(exactly 3 children have brown eyes)?
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Big Q: Fixed parameter or random variable?
Parameters   What is common among all 
      outcomes of our experiment?

Random variable What differentiates our event
      from the rest of the sample
      space?
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1. Each parent has 2 genes per trait (e.g., eye color).
• Child inherits 1 gene from each parent with equal likelihood.
• Brown eyes are "dominant", blue eyes are "recessive":
• Child has brown eyes if either or both genes for brown eyes are inherited.
• Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)

• Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.
Two parents have 4 children. What is P(exactly 3 children have brown eyes)?
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Genetic	inheritance

1. Define events/ 
RVs & state goal

3. Solve

𝑋: # brown-eyed children,
     𝑋~Bin(4, 𝑝)
𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

2. Identify known 
probabilities
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NBA	Finals
2. Let’s speculate that the Boston Celtics will play the Oklahoma City

Thunder in a 7-game series during the 2024 NBA finals this June.
• The Celtics have a probability of 81% of

winning each game, independently.
• A team wins if they win at least 4 games (we’ll assume they play all 7 games). 

What is P(Celtics winning)?
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Cool Probability Fact: this is identical to the probability of winning 
if we define winning  to be that to to first win 4 games

1. Define events/ 
RVs & state goal

2. Solve

𝑋: # games Celtics win
     𝑋~Bin(7, 0.81)

Want: 𝑃 𝑋 ≥ 4

𝑃 𝑋 ≥ 4 = ,
1)2

3

𝑃 𝑋 = 𝑘 = ,
1)2

3
7
𝑘 0.8110.19341


