07: Variance,
 Bernoulli, Binomial
 Jerry Cain
 April $15^{\text {th }}, 2024$
 Lecture Discussion on Ed

Variance

Average temperatures

> Stanford, CA
> $E[$ high $]=68^{\circ} \mathrm{F}$
> $E[$ low $]=52^{\circ} \mathrm{F}$

Is $E[X]$ enough? Does is capture everything?

Average temperatures

> Stanford, CA
> $E[$ high $]=68^{\circ} \mathrm{F}$
> $E[$ low $]=52^{\circ} \mathrm{F}$

Stanford high temps

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$

$$
E[\mathrm{low}]=51^{\circ} \mathrm{F}
$$

Washington high temps

Normalized histograms are approximations of probability mass functions, i.e., PMFs.

Variance = measure of "spread"

Consider the following three distributions (PMFs):

- Expectation: $E[X]=3$ for all distributions $\}^{\text {why do we know? all thue }}$ distributions are symnetuc avourd
- But the shape and spread across distributions are very different!
- Variance, $\operatorname{Var}(X)$: a formal quantification of spread

Variance

The variance of a random variable X with mean $E[X]=\mu$ is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- Also written as: $E\left[(X-E[X])^{2}\right]$
- Note: $\operatorname{Var}(X) \geq 0$
- Other names: $\mathbf{2}^{\text {nd }}$ central moment, or square of the standard deviation

	$\operatorname{Var}(X)$		
def standard deviation	$\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$	\quad	Units of X^{2}
:---			
Units of X			

Variance of Stanford weather

$$
\begin{array}{ll}
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] & \text { Variance } \\
\text { of } X
\end{array}
$$

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$
$E[$ low $]=52^{\circ} \mathrm{F}$
Stanford high temps

Variance $E\left[(X-\mu)^{2}\right]=39\left({ }^{\circ} \mathrm{F}\right)^{2}$
Standard deviation $\quad=6.2^{\circ} \mathrm{F}$

Comparing variance

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] \quad \begin{array}{ll}
\text { Variance } \\
\text { of } X
\end{array}
$$

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$

Stanford high temps

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$

Washington high temps

Stanford University 8

Properties of Variance

Properties of variance

Definition
def standard deviation

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & & \text { Units of } X^{2} \\
\mathrm{SD}(X) & =\sqrt{\operatorname{Var}(X)} & & \text { Units of } X
\end{aligned}
$$

Property 1
Property 2

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2} \\
& \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{aligned}
$$

- Property 1 is often easier to manipulate than the original definition
- Unlike expectation, variance is not linear

Properties of variance

Definition	$\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$	Units of X^{2}
def standard deviation	$\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$	Units of X

Property 1
Property 2
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Computing variance, a proof

$$
\begin{array}{rlrl}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & \text { Variance } \\
& =E\left[X^{2}\right]-(E[X])^{2} \text { of } X
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[(X-\mu)^{2}\right] \quad \text { Let } E[X]=\mu \\
&=\sum_{x}(x-\mu)^{2} p(x) \\
&=\sum_{x}^{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
&=\sum_{x}^{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x) \\
& \text { Everyone, } \\
& \text { vease } \\
& \text { come } \\
& \text { second } \\
& \text { moment! }=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \cdot 1 \\
&\left.=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}\right]-\mu^{2} \\
&=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Variance of a 6-sided die

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & & \text { Variance } \\
& =E\left[X^{2}\right]-(E[X])^{2} & & \text { of } X
\end{aligned}
$$

Let $\mathrm{Y}=$ outcome of a single die roll. Recall $E[Y]=7 / 2$.
Calculate the variance of Y .

1. Approach \#1: Definition

$$
\begin{aligned}
& \operatorname{Var}(Y)=\frac{1}{6}\left(1-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(2-\frac{7}{2}\right)^{2} \quad E\left[Y^{2}\right]=\frac{1}{6}\left[1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right] \\
& +\frac{1}{6}\left(3-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(4-\frac{7}{2}\right)^{2} \\
& +\frac{1}{6}\left(5-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(6-\frac{7}{2}\right)^{2} \\
& =35 / 12 \\
& \text { = 91/6 } \\
& \operatorname{Var}(Y)=\mathrm{E}\left[Y^{2}\right]-\mathrm{E}[\mathrm{Y}]^{2}=91 / 6-(7 / 2)^{2} \\
& =35 / 12
\end{aligned}
$$

Properties of variance

Definition
def standard deviation

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & & \text { Units of } X^{2} \\
\operatorname{SD}(X) & =\sqrt{\operatorname{Var}(X)} & & \text { Units of } X
\end{aligned}
$$

Property 1
Property 2

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Property 2: A proof

Property $2 \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
these terms cancel
these terme cancel
as well

Proof: $\operatorname{Var}(a X+b)$

$$
\begin{array}{ll}
=E\left[(a X+b)^{2}\right]-(E[a X+b])^{2} & \text { Property } 1 \\
=E\left[a^{2} X^{2}+2 a b X+b^{2}\right]-(a E[X]+b)^{2} & \\
\left.=a^{2} E\left[X^{2}\right]+2 a b E[X]+b^{2}-\left(a^{2}(E[X])^{2}+2 a b E[X]+b^{2}\right)\right] \\
=a^{2} E\left[X^{2}\right]-a^{2}(E[X])^{2} & \begin{array}{l}
\text { Factoring/ } \\
\text { Linearity of } \\
\text { Expectation }
\end{array} \\
=a^{2}\left(E\left[X^{2}\right]-(E[X])^{2}\right) & \\
=a^{2} \operatorname{Var}(X) & \text { Property 1 }
\end{array}
$$

Other Moments of Interest

Skewness:

Kurtosis:

Sometimes referred to as the $3^{\text {rd }}$ central moment and computed as $E\left[(X-E[X])^{3}\right]$, skewness provides a measure of whether a probability distribution is symmetric or asymmetric.
Sometimes referred to as the $4^{\text {th }}$ central moment and computed as $E\left[(X-E[X])^{4}\right]$, kurtosis provides a measure of how concentrated the distribution is. Some distributions are so dispersed they don't have finite variances or means.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
[image source]

Bernoulli RV

Bernoulli Random Variable

Consider an experiment with two outcomes: "success" and "failure". def A Bernoulli random variable X maps "success" to 1 and "failure" to 0 . Other names: indicator random variable, Boolean random variable

	PMF	$P(X=1)=p(1)=p$
$X \sim \operatorname{Ber}(p)$		$P(X=0)=p(0)=1-p$
	Expectation	$E[X]=p$
Support: $\{0,1\}$	Variance	$\operatorname{Var}(X)=p(1-p)$

Examples:

- Coin flip
- Random binary digit
- Whether Doris barks

Defining Bernoulli RVs

$$
\begin{array}{ll}
X \sim \operatorname{Ber}(p) & p_{X}(1)=p \\
E[X]=p & p_{X}(0)=1-p
\end{array}
$$

Run a program

- Crashes w.p. p
- Works w.p. $1-p$

Let $X: 1$ if crash

$$
\begin{gathered}
X \sim \operatorname{Ber}(p) \\
P(X=1)=p \\
P(X=0)=1-p
\end{gathered}
$$

Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let X : 1 if clicked
$X \sim \operatorname{Ber}(\underline{0,2})$
$P(X=1)=0,2$
$P(X=0)=0.8$

Let $X: 1$ if success
underilying enat space: $\{(4,1),(5,5),(6,4)\}$

Roll two dice.

- Success: roll a 10
- Failure: anything else

$$
X \sim \operatorname{Ber}(1 / 12)^{p=\frac{3}{36}=\frac{1}{12}}
$$

$$
E[X]=1 / 126
$$

Stanford University

Binomial RV

Binomial Random Variable

Consider an experiment: n independent $\operatorname{Ber}(p)$ trials. def A Binomial random variable X counts the successes across n trials.

$$
\begin{array}{lll}
X \sim \operatorname{Bin}(n, p) & & k=0,1, \ldots, n: \\
& & P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \text { Expectation } & E[X]=n p
\end{array}
$$

$$
\text { Po: } X \sim \operatorname{Bin}(n, p) \text { means } X \text { is rally a }
$$

Examples:

$$
\begin{aligned}
& \text { arum of nindepereent } \\
& \text { Bevnmili trials. }
\end{aligned}
$$

$$
x=x_{1}+x_{2}+x_{3}+\cdots+x_{n}
$$

- \# of 1's in randomly generated length n bit string $E[X]=E\left[x_{1}+x_{2}+x_{3}+x_{4}+\cdots+x_{n}\right]$
- \# of disk drives crashed in 1000 computer cluster $=E\left[x_{1}\right]+E\left[x_{2}\right]+E\left[x_{3}\right]+\cdots+E\left[x_{n}\right]$ (assuming disks crash independently)

Reiterating notation

The parameters of a Binomial random variable:

- n : number of independent trials
- p : probability of success on each trial

Reiterating notation

$$
X \sim \operatorname{Bin}(n, p)
$$

If X is a binomial with parameters n and p, the PMF of X is

Three coin flips

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Three fair (with $p=0.5$) coins are flipped.

- X is number of heads
- $\quad X \sim \operatorname{Bin}(3,0.5)$

Compute the following event probabilities:

$$
\begin{aligned}
& P(X=0) \\
& P(X=1) \\
& P(X=2) \\
& P(X=3) \\
& P(\text { event })
\end{aligned}
$$

Three coin flips

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Three fair (with $p=0.5$) coins are flipped.

- X is number of heads
- $\quad X \sim \operatorname{Bin}(3,0.5)$

Compute the following event probabilities:

$$
\begin{array}{ll}
P(X=0)=p(0) & =\binom{3}{0} p^{0}(1-p)^{3}=\frac{1}{8} \\
P(X=1)=p(1) & =\binom{3}{1} p^{1}(1-p)^{2}=\frac{3}{8} \\
P(X=2)=p(2) & =\binom{3}{2} p^{2}(1-p)^{1}=\frac{3}{8} \\
P(X=3)=p(3) & =\binom{3}{3} p^{3}(1-p)^{0}=\frac{1}{8} \\
P(\text { event }) &
\end{array}
$$

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

```
PMF }\quadk=0,1,\ldots,n
    P(X=k) =p(k)=( (\begin{array}{l}{n}\\{k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}
    Expectation E[X]=np
    Range: {0,1,\ldots,n} Variance Var(X)=np(1-p)
```


Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial RV is sum of Bernoulli RVs

Bernoulli

- $X \sim \operatorname{Ber}(p)$

Binomial

- $Y \sim \operatorname{Bin}(n, p)$
- The sum of n independent Bernoulli RVs

$$
Y=\sum_{i=1}^{n} X_{i}, \quad X_{i} \sim \operatorname{Ber}(p)
$$

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

	PMF	$k=0,1, \ldots, n:$
		$P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Range: $\{0,1, \ldots, n\}$	Expectation	$E[X]=n p$
	Variance	$\operatorname{Var}(X)=n p(1-p)$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

```
PMF
X~Bin}(n,p
Range: \(\{0,1, \ldots, n\} \quad\) Variance
```


Examples:

```
- \# heads in n coin flips
- \# of 1's in randomly generated length \(n\) bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)
```

Exercises

Statistics: Expectation and variance

1. a. Let $X=$ the outcome of a fair 24 -sided die roll. What is $E[X]$?
b. Let $Y=$ the sum of seven rolls of a fair 24-sided die. What is $E[Y]$?
2. Let $Z=\#$ of tails on 10 flips of a biased coin, with $\mathrm{p}=0.71$. What is $E[Z]$?
3. Compare the variances of $B_{0} \sim \operatorname{Ber}(0.0), B_{1} \sim \operatorname{Ber}(0.1)$, $B_{2} \sim \operatorname{Ber}(0.5)$, and $B_{3} \sim \operatorname{Ber}(0.9)$.

Statistics: Expectation and variance

If you can identify common RVs, just look up statistics instead of rederiving from scratch.

1. a. Let $X=$ the outcome of a fair 24-sided die roll. What is $E[X]$?
b. Let $Y=$ the sum of seven rolls of a fair 24-sided die. What is $E[Y]$?

$$
\left.\begin{array}{l}
\text { support ic }\{1,2,3,4, \cdots, 22,23,24\} \\
E[x]
\end{array}=12,5 \text { by symmetry }\right\} \text { } \begin{aligned}
E[y] & =E\left[x_{1}+x_{2}+x_{3}+\cdots+x_{7}\right] \\
& =E\left[x_{1}\right]+E\left[x_{2}\right]+E\left[x_{3}\right]+\cdots+E\left[x_{1}\right] \\
& =7 E\left[x_{1}\right]=87,5
\end{aligned}
$$

2. Let $Z=\#$ of tails on 10 flips of a biased coin, with $\mathrm{p}=0.71$. What is $E[Z]$? assume prodpalilith head! counting $q=1-p=0.29$
3. Compare the variances of $B_{0} \sim \operatorname{Ber}(0.0), B_{1} \sim \operatorname{Ber}(0.1)$,

$$
\left\{\begin{array}{l}
\operatorname{Var}\left(B_{0}\right)=0 \rightarrow \text { no spread, no variation } \\
\operatorname{Var}\left(B_{1}\right)=0,1 \cdot 0.9=0,09 \rightarrow \text { very little } \\
\operatorname{siv}\left(B_{2}\right)=0,5 \cdot 0.5=0,25 \rightarrow \text { relations } \\
\operatorname{Var}\left(B_{3}\right)=\operatorname{Var}\left(B_{1}\right)=0.09 \text { large }
\end{array}\right.
$$

Visualizing Binomial PMFs

$$
\begin{array}{cc}
E[X]=n p \\
X \sim \operatorname{Bin}(n, p) & p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{array}
$$

Visualizing Binomial PMFs

$$
\begin{gathered}
E[X]=n p \\
X \sim \operatorname{Bin}(n, p) \quad p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{gathered}
$$

Match the distribution of X to the graph:

1. $\operatorname{Bin}(10,0.5)$
2. $\operatorname{Bin}(10,0.3)$
3. $\operatorname{Bin}(10,0.7)$
4. $\operatorname{Bin}(5,0.5)$

Galton Board

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. What is the distribution of B ?

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. What is the distribution of B ?

- Each pin is an independent trial
- One decision made for level $i=1,2, . ., 5$
- Consider a Bernoulli RV with success R_{i} if ball went right on level i
- Bucket index $B=$ \# times ball went right

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

$$
P(B=0)=\binom{5}{0} 0.5^{5} \approx 0.03
$$

$$
P(B=1)=\binom{5}{1} 0.5^{5} \approx 0.16
$$

$$
P(B=2)=\binom{5}{2} 0.5^{5} \approx 0.31
$$

PMF of Binomial RV!

Genetics and NBA Finals

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.
- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?
2. Let's speculate that the Boston Celtics will play the Oklahoma City Thunder in a 7 -game series during the 2024 NBA finals this June.

- The Celtics have a probability of 81% of winning each game, independently.
- A team wins if they win at least 4 games (we'll assume they play all 7 games) What is P (Celtics winning)?

Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.

- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes. Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

Big Q: Fixed parameter or random variable?

Parameters

Random variable

What is common among all outcomes of our experiment?

$$
n=4, p=p_{\text {brown }}=0.75
$$

What differentiates our event from the rest of the sample space? $x \in\{0,1,2,3,4\}$, but $x=3$ is the erent of intevest

Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.

- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P (exactly 3 children have brown eyes)?

1. Define events/ RVs \& state goal
2. Identify known probabilities

$$
R \text { : brown }
$$

X : \# brown-eyed children, $X \sim \operatorname{Bin}(4, p)$, where $p=0.75$ $p: P$ (brown-eyed child)
Want: $P(X=3)$
3. Solve $\begin{aligned} P(x=3)=\binom{4}{3} & 0.75^{3} \cdot 0.261 \\ & =0.4219\end{aligned}$

NBA Finals

2. Let's speculate that the Boston Celtics will play the Oklahoma City Thunder in a 7 -game series during the 2024 NBA finals this June.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins if they win at least 4 games (we'll assume they play all 7 games). What is P (Celtics winning)?

1. Define events/ RVs \& state goal

X: \# games Celtics win $X \sim \operatorname{Bin}(7,0.81)$
Want: $P(X \geq 4)$
2. Solve
$P(X \geq 4)=\sum_{k=4}^{7} P(X=k)=\sum_{k=4}^{7}\binom{7}{k} 0.81^{k} 0.19^{7-k}$
Cool Probability Fact: this is identical to the probability of winning if we define winning to be that to to first win 4 games

