# o8: Poisson and More 

Jerry Cain<br>April $17^{\text {th }}, 2024$

Lecture Discussion on Ed


## Algorithmic ride sharing



Probability of $k$ requests from this area in the next 1 minute?
Suppose we know: On average, $\lambda=5$ requests per minute $k$ can, in theor, be

## Algorithmic ride sharing, approximately

Probability of $k$ requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into 60 seconds:

| 0 | 0 | 1 | 0 | 1 | $\ldots$ | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 |  |  |  |  |  |  |
| second: |  |  |  |  |  |  |  |  |  |  | $E[X]=\lambda=5$

## Algorithmic ride sharing, approximately

Probability of $k$ requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into 60,000 milliseconds:


At each millisecond:

- Independent Bernoulli trial
- You get a request (1) or you don't (0).

Let $X=\#$ of requests in minute. $E[X]=\lambda=5$

$$
P(X=k)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

$$
\begin{aligned}
& \text { as sell. (f) } u=6,6, \text {,0on how then p must be be } 5 / 60000 \\
& X \sim \operatorname{Bin}(n=60000, p=\lambda / n)
\end{aligned}
$$

## Algorithmic ride sharing, approximately

Probability of $k$ requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into infinitely small buckets:


Let $X=\#$ of requests in minute. $E[X]=\lambda=5$

## Binomial in the limit

$P(X=k)=\lim _{n \rightarrow \infty}\left[\begin{array}{l}n \\ k\end{array}\right)\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \stackrel{\text { Expand }}{=} \lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}} \frac{\widetilde{\left(1-\frac{\lambda}{n}\right)^{n}}}{\left(1-\frac{\lambda}{n}\right)^{k}}$
Expand
$=\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{n^{k} \text { these }} \frac{(n-k)!}{(n-k)!} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{\left(1-\frac{\lambda}{n}\right)^{k}}$


## Algorithmic ride sharing



Probability of $k$ requests from this area in the next 1 minute? On average, $\lambda=5$ requests per minute

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

## Poisson distribution

## Poisson Random Variable

Consider an experiment that lasts a fixed interval of time. def A Poisson random variable $X$ is the number of successes over thé cimiar experiment duration, assuming the time that each success occurs is independent and the average \# of requests over time is constant.

$$
\begin{array}{lll}
X \sim \operatorname{Poi}(\lambda) & \text { PMF } & P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \\
\text { Support: }\{0,1,2, \ldots\} & \text { Expectation } & E[X]=\lambda \\
\text { Variance } & \operatorname{Var}(X)=\lambda
\end{array}
$$

Examples:

- \# earthquakes per year
- \# server hits per second
- \# of emails per day
for Poisson RV! More later!


## Earthquakes

$$
\begin{aligned}
& X \sim \operatorname{Poi}(\lambda) \\
& E[X]=\lambda
\end{aligned} \quad p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

There are an average of 2.79 major earthquakes in the world each year, and major earthquakes occur independently.
What is the probability of 3 major earthquakes happening next year?

1. Define RVs units of $\lambda$
is events per
time perind
2. Solve

$$
\begin{aligned}
& \text { Solve } \\
& p(x=3)=e^{-2.79} \frac{2.79^{3}}{3!} \cong 0.22
\end{aligned}
$$



# Other Discrete RVs 

## Grid of random variables

|  | Number of successes | Time until success |  |
| :---: | :---: | :---: | :---: |
| One trial | $\operatorname{Ber}(p)$ |  | One success |
| Several trials | $\operatorname{Bin}(n, p)$ |  | Several successes |
| Interval of time | $\operatorname{Poi}(\lambda)$ | (next week) | Interval of time to first success |

Geometric RV consider a fair cin: $\begin{aligned} H: P(x=1) & =0,5 \\ \text { TH: } P(x=2) & =0,25 \\ \text { TTH: } P(x=3) & =0,125 \\ \text { TTH: } P(x=4) & =0,0675 \text { ete. }\end{aligned}$ Consider an experiment: independent trials of $\operatorname{Ber}(p)$ random variables. def A Geometric random variable $X$ is the \# of trials until the first success.
$X \sim \operatorname{Geo}(p)$
Support: $\{1,2, \ldots\}$

PMF $\quad P(X=k)=(1-p)^{k-1} p$
Expectation $E[X]=\frac{1}{p}$
Variance $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

## Examples:

- Flipping a coin $(P($ heads $)=p)$ until first heads appears
- Generate bits with $P($ bit $=1)=p$ until first 1 generated


## Negative Binomial RV

Consider an experiment: independent trials of $\operatorname{Ber}(p)$ random variables. def A Negative Binomial random variable $X$ is the \# of trials until $r$ successes.

$$
\begin{array}{lll}
X \sim \operatorname{NegBin}(r, p) & \text { PMF } & P(X=k)=\binom{k-1}{r-1}(1-p)^{k-r} p^{r} \\
& \text { Expectation } & E[X]=\frac{r}{p} \\
\text { Support: }\{r, r+1, \ldots\} & \text { Variance } & \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{array}
$$

Examples: need at keast $r$ trials if we need $r$ successes

- Flipping a coin until $r^{\text {th }}$ heads appears
- \# of strings to hash into table until bucket 1 has $r$ entries


## Grid of random variables

|  | Number of <br> successes | Time until <br> success |  |
| :---: | :---: | :---: | :---: |
| One trial | $\operatorname{Ber}(p)$ | $\operatorname{Geo}(p)$ | One success |
| Several <br> trials | $\operatorname{Bin}(n, p)$ | NegBin $(r, p)$ | Several <br> successes |
| Interval <br> of time | $\operatorname{Poi}(\lambda)$ | (this Friday) | Interval of time to <br> first success |

## Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p=0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the $5^{\text {th }}$ try?

1. Define events/ RVs \& state goal
$X \sim$ some distribution
Want: $P(X=5)$

## 2. Solve

A. $X \sim \operatorname{Bin}(5,0.1)$
B. $X \sim \operatorname{Poi}(0.5)$
C. $X \sim \operatorname{NegBin}(5,0.1)$
D. $X \sim \operatorname{NegBin}(1,0.1)$
E. $X \sim G e o(0.1)$

## Catching Pokemon

$$
X \sim \operatorname{Geo}(p) \quad p(k)=(1-p)^{k-1} p
$$

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p=0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the $5^{\text {th }}$ try?

1. Define events/ RVs \& state goal

$$
\times \text { A. } \quad X \sim \operatorname{Bin}(5,0.1)
$$

$X \sim$ some distribution
Want: $P(X=5)$
2. Solve
$\times$ B. $\quad X \sim \operatorname{Poi}(0.5)$
$\times$ C. $\quad X \sim \operatorname{NegBin}(5,0.1)$
$X \sim \operatorname{NegBin}(1,0.1)\}$ these are
$X \sim \operatorname{Geo}(0.1) \int$ the same distribution


## Exercises

The hardest part of is almost always deciding what you're modeling and what random variable to use.

## Kickboxing with RVs

How might you model the following?

1. \# of snapchats you receive in a day
2. \# of children born to the same parents until the first one with green eyes
3. If stock went up (1) or down (0) in a day
4. \# of probability problems you try until you get 5 correct (if you are randomly correct)
5. \# of years between now and 2050 with more than 6 Atlantic hurricanes
```
Choose from: C. Poi}(\lambda
A. }\operatorname{Ber}(p) D. Geo(p
B. }\operatorname{Bin}(n,p) E. NegBin (r,p
```


## Kickboxing with RVs

How might you model the following?

| Choose from: | C. | $\operatorname{Poi}(\lambda)$ |
| :--- | :--- | :--- |
| A. $\operatorname{Ber}(p)$ D. <br> Beo $(p)$   <br> B. $\operatorname{Bin}(n, p)$ E. <br> $\operatorname{NegBin}(r, p)$   |  |  |

1. \# of snapchats you receive in a day
C. $\operatorname{Poi}(\lambda)$

Axed time intanal
2. \# of children born to the same parents until the first one with green eyes
yes, each baby ic on independent.
3. If stock went up (1) or down (0) in a day A. $\operatorname{Ber}(p)$ or $B \cdot \operatorname{Bin}(1, p)$
4. \# of probability problems you try until you get 5 correct (if you are randomly correct)
5. \# of years between now and 2050 with more than 6 Atlantic hurricanes
Note: These exercises are designed to build intuition; in a problem statement, you'll generally be given more detail.
E. $\operatorname{NegBin}(r=5, p)$
$\varsigma^{2050-2024+1}$
B. $\operatorname{Bin}(n=27, p)$, where $p=P(\geq 6$ hurricanes in a year) calculated from C. Poi( $\lambda$ )

## Poisson Random Variable

$$
\begin{array}{lll}
X \sim \operatorname{Poi}(\lambda) & \text { PMF } & P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& \text { Expectation } & E[X]=\lambda \\
\text { Support: }\{0,1,2, \ldots\} & \text { Variance } & \operatorname{Var}(X)=\lambda
\end{array}
$$

In CS109, a Poisson RV $X \sim \operatorname{Poi}(\lambda)$ most often models

1. \# of successes in a fixed interval of time, where successes are independent $\lambda=E[X]$, average success/interval
2. Web server load

$$
\begin{aligned}
& X \sim \operatorname{Poi}(\lambda) \\
& E[X]=\lambda
\end{aligned} \quad p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second, where requests arrive independently.
- Let $X=\#$ requests the server receives in a second.

What is $P(X<5)$ ?

Define RVs

$$
x \sim \operatorname{Poi}(\lambda=2)
$$

unit of time is the second

Solve

$$
\begin{aligned}
& P(x<5)=P(x \leq 4) \\
&=\sum_{k=0}^{4} e^{-2} \frac{2^{k}}{k!}=e^{-2} \sum_{k=0}^{4} \frac{2^{k}}{k!} \\
& \approx 0,9473
\end{aligned}
$$

## Poisson Random Variable

$$
\begin{array}{lll}
X \sim \operatorname{POi}(\lambda) & \mathrm{PMF} & P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \\
\text { Support: }\{0,1,2, \ldots\} & \text { Expectation } & E[X]=\lambda \\
\text { Variance } & \operatorname{Var}(X)=\lambda
\end{array}
$$

In CS109, a Poisson RV $X \sim \operatorname{Poi}(\lambda)$ most often models

1. \# of successes in a fixed time interval, where successes are independent
$\lambda=E[X]$, average success/interval
2. Approximation of $Y \sim \operatorname{Bin}(n, p)$ where $n$ is large and $p$ is small. $\lambda=E[Y]=n p \begin{array}{r}\text { remember that the Poissum was born in the limit of } \\ \text { a Binumial with a fixed areaje halue and } n \rightarrow \infty\end{array}$ Approximation works well even when trials not entirely independent.

## 2. DNA



All the movies, images, emails and other digital data from more than 600 smartphones ( $10,000 \mathrm{~GB}$ ) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?

## 2. DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^{4}$
- Probability of corruption of each base pair is very small, e.g., $p=10^{-6}$
- Let $X=\#$ of corruptions.

What is $\mathrm{P}(\mathrm{DNA}$ storage is uncorrupted $)=P(X=0)$ ?


1. Approach 1:

$$
\begin{aligned}
& X \sim \operatorname{Bin}\left(n=10^{4}, p=10^{-6}\right) \\
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

unwieldy! ! $=\binom{10^{4}}{0} 10^{-6 \cdot 0}\left(1-10^{-6}\right)^{10^{4}-0}$ $\approx 0.990049829$
2. Approach 2 :

$$
\begin{aligned}
X \sim \operatorname{Poi}(\lambda & \left.=10^{4} \cdot 10^{-6}=0.01\right) \\
P(X=k) & =e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-0.01} \frac{0.01^{0}}{0!} \\
& =e^{-0.01}
\end{aligned}
$$

$$
\approx 0.990049834 \text { approximation! }
$$

## When is a Poisson approximation appropriate?

$$
\begin{aligned}
& P(X=k)=\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}=\cdots \\
& =\lim _{n \rightarrow \infty} \frac{n!}{n^{k}(n-k)!} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{\left(1-\frac{\lambda}{n}\right)^{k}}
\end{aligned}
$$

Under which conditions will $X \sim \operatorname{Bin}(n, p)$ behave like Poi $(\lambda)$, where $\lambda=n p$ ?
A. Large $n$, large $p$
B. Small $n$, small $p$
C. Large $n$, small $p$
D. Small $n$, large $p$
E. Other

$$
=\lim _{n \rightarrow \infty} \frac{n^{k}}{n^{k}} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{1} \quad \begin{aligned}
& \text { this sualic } \\
& \text { because } p=\frac{\lambda}{n} \text { is timy } \\
& \text { and appraching } 0
\end{aligned}
$$

simplify $=\frac{\lambda^{k}}{k!} e^{-\lambda}$

## Poisson approximation

$$
\begin{array}{ll}
X \sim \operatorname{Poi}(\lambda) & Y \sim \operatorname{Bin}(n, p) \\
E[X]=\lambda & E[Y]=n p
\end{array}
$$

Poisson approximates Binomial when $n$ is large, $p$ is small, and $\lambda=n p$ is "moderate".

Different interpretations of "moderate":

- $n>20$ and $p<0.05\}$ this me.
- $n>100$ and $p<0.1$


Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$


## Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable $X$ is the number of occurrences over the experiment duration.


Support: $\{0,1,2, \ldots\}$

PMF

Expectation $E[X]=\lambda$
Variance $\operatorname{Var}(X)=\lambda$

## Examples:

- \# earthquakes per year
- \# server hits per second
- \# of emails per day

Time to show intuition for why expectation == variance!

## Properties of $\operatorname{Poi}(\lambda)$ with the Poisson paradigm

Recall the Binomial:

$$
\begin{array}{lll}
Y \sim \operatorname{Bin}(n, p) & \text { Expectation } & E[Y]=n p \\
\text { Variance } & \operatorname{Var}(Y)=n p(1-p)
\end{array}
$$

Consider $X \sim \operatorname{Poi}(\lambda)$, where $\lambda=n p(n \rightarrow \infty, p \rightarrow 0)$ :

$$
\begin{array}{lll}
X \sim \operatorname{Poi}(\lambda) & \text { Expectation } & E[X]=\lambda \\
& \text { Variance } & \operatorname{Var}(X)=\lambda
\end{array}
$$

Proof:

$$
\begin{aligned}
& E[X]=n p=\lambda \\
& \operatorname{Var}(X)=n p(\underset{\text { Vem sman }}{\underset{\text { vin }}{p})} \rightarrow \lambda(1-0)=\lambda
\end{aligned}
$$



Stanford University

## Poisson Approximation, approximately

Poisson can still provide a good approximation of the Binomial, even when assumptions are "mildly" violated.

You still can apply the Poisson approximation when:

- "Successes" in trials are almost, but not entirely independent e.g., \# entries in each bucket in large hash table.
- Probability of "success" in each trial varies (slightly), like a small relative change in a very small $p$ e.g., average \# requests to web server/sec may fluctuate slightly due to load on network or time of day

We won't explore this too much, but we want you to know about it anyway.

## Can these Binomial RVs be approximated?

Poisson approximates Binomial when $n$ is large, $p$ is small, and $\lambda=n p$ is "moderate".


Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$


Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$


## Can these Binomial RVs be approximated?

Poisson approximates Binomial when $n$ is large, $p$ is small, and $\lambda=n p$ is "moderate".


Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$


Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

