10: Normal Distributions

Jerry Cain
April 22 ${ }^{\text {nd }}, 2024$

Lecture Discussion on Ed

Normal Random Variables

Normal Random Variable

def A Normal random variable X is defined as follows:

$$
\begin{array}{cll}
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) & \text { PDF } & f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
\text { Support: }(-\infty, \infty) & \text { Expectation } & E[X]=\mu \\
& \text { Variance } & \operatorname{Var}(X)=\sigma^{2}
\end{array}
$$

Other names: Gaussian random variable
$X \sim \mathcal{N}\left(\mu, \sigma^{\frac{\Gamma^{\text {mean }}}{\sqrt{\star}} 2}\right)^{\text {variance }}$

Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician.

$$
\begin{aligned}
& \text { Johann Carl Friedrich Gauss (/gaus/; German: Gauß [gaus] (} 1 \text {) listen); Latin: Carolus Fridericus Gauss; } 30 \\
& \text { April } 1777-23 \text { February } 1855 \text {) was a German mathematician and physicist who made significant } \\
& \text { contributions to many fields, including algebra, analysis, astronomy, differential geometry, electrostatics, } \\
& \text { geodesy, geophysics, magnetic fields, matrix theory, mechanics, number theory, optics and statistics. } \\
& \text { Sometimes referred to as the Princeps mathematicorum }{ }^{[1]} \text { (Latin for "the foremost of mathematicians") and } \\
& \text { "the greatest mathematician since antiquity", Gauss had an exceptional influence in many fields of } \\
& \hline \text { mathematics and science, and is ranked among history's most influential mathematicians. }{ }^{[2]}
\end{aligned}
$$

Did not invent Normal distribution but rather popularized it.

Why the Normal?

- Common for natural phenomena: height, weight, etc.
- Most noise in the world is Normal
- Often results from the sum of many random variables

That's what they

- Sample means are distributed normally

Why the Normal?

- Common for natural phenomena: height, weight, etc.
- Most noise in the world is Normal
- Often results from the sum of many random variables
- Sample means are distributed normally

Actually log-normal

Just an assumption

$$
\begin{gathered}
\text { thrugh it is a reas suably } \\
\text { gove one. }
\end{gathered}
$$

Only if equally weighted we will study this! :̈

(okay this one is true, we'll see this in 3 weeks)

Okay, so why the Normal?

Part of CS109 learning goals:

- Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

How do you model student heights?

- Suppose you have data from one classroom.

Okay, so why the Normal?

Part of CS109 learning goals:

- Translate a problem statement into a random variable In other words: model real life situations with probability distributions

How do you model student heights?

- Suppose you have data from one classroom.

Why the Normal?

- Common for natural phenomena: height, weight, etc.
- Most noise in the world is Normal
- Most noise in the world is Normal
randen results from
Only if equally weighted
beca
- Sampli _ulls are distributed normally

Actually log-norr
(okay this one is true, we'll see this in 3 weeks)

Stay critical of how to model realworld phenomena.

Anatomy of a beautiful equation

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

The PDF of X is defined as:
(x)

Normal Random Variable

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Match PDF to distribution:

Getting to class

You spend some minutes, X, traveling between classes.

- Average time spent: $\mu=4$ minutes
- Variance of time spent: $\sigma^{2}=2$ minutes 2

Suppose X is normally distributed. What is the probability you spend ≥ 6 minutes traveling?

$$
\begin{aligned}
& X \sim \mathcal{N}\left(\mu=4, \sigma^{2}=2\right) \\
& P(X \geq \underset{\sim}{6})=\int_{6}^{\infty} f(x) d x=\int_{6}^{\infty} \frac{1}{2 \sqrt{\pi}} e^{-\frac{(x-4)^{2}}{4}}{\underset{20^{2}}{ }{ }^{2}}^{(x)}
\end{aligned}
$$

[^0]
Computing probabilities with Normal RVs

For a Normal RV $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, its CDF has no closed form.

$$
P(X \leq x)=F(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y \begin{gathered}
\text { (Cannot be } \\
\text { solved } \\
\text { analytically }
\end{gathered}
$$

However, we can solve for probabilities numerically using a function Φ :

Normal RV: Properties

Properties of Normal RVs

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with CDF $P(X \leq x)=F(x)$.

1. Linear transformations of Normal RVs are also Normal RVs.

$$
\text { If } Y=a X+b, \text { then } Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

2. The PDF of a Normal RV is symmetric about the mean μ.

1. Linear transformations of Normal RVs

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with CDF $P(X \leq x)=F(x)$.
Linear transformations of X are also Normal.

$$
\text { If } Y=a X+b \text {, then } Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

Proof:

- $E[Y]=E[a X+b]=a E[X]+b=a \mu+b \quad$ Linearity of Expectation
- $\operatorname{Var}(Y)=\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2} \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- Y is also Normal

Proof in Ross, $10^{\text {th }}$ ed (Section 5.4)

2. Symmetry of Normal RVs

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with CDF $P(X \leq x)=F(x)$.
The PDF of a Normal RV is symmetric about the mean μ.

$$
F(\mu-x)=1-F(\mu+x)
$$

Using symmetry of the Normal RV

$$
F(\mu-x)=1-F(\mu+x)
$$

Let $Z \sim \mathcal{N}(0,1)$ with CDF $P(Z \leq z)=F(z)$.
Suppose we only knew numeric values for $F(z)$ and $F(y)$, for some $y, z \geq 0$.

How do we compute the following probabilities?

1. $P(Z \leq z)=F(z)$
2. $P(Z<z)$
3. $P(Z \geq z)$
A. $F(z)$
4. $P(Z \leq-Z)$
5. $P(Z \geq-z)$
6. $P(y<Z<z)$

Using symmetry of the Normal RV

$$
F(\mu-x)=1-F(\mu+x)
$$

Let $Z \sim \mathcal{N}(0,1)$ with CDF $P(Z \leq z)=F(z)$.
Suppose we only knew numeric values for $F(z)$ and $F(y)$, for some $y, z \geq 0$.

How do we compute the following probabilities?

1. $P(Z \leq z)$
$=F(z)$
2. $P(Z<z)=F(z)$
3. $P(Z \geq z)=1-F(z)$
4. $P(Z \leq-z)=1-F(z)$
5. $P(Z \geq-z)=F(z)$
6. $P(y<Z<z)=F(z)-F(y)$

Symmetry is particularly useful when computing probabilities of zero-mean Normal RVs.
A. $F(z)$
B. $1-F(z)$
C. $F(z)-F(y)$

Normal RV: Computing probability

Computing probabilities with Normal RVs

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

To compute the CDF, $P(X \leq x)=F(x)$:

- We cannot analytically solve the integral, as it has no closed form.
- ... but we can solve numerically using a function Φ :

Standard Normal RV, Z

The Standard Normal random variable Z is defined as follows:

$$
Z \sim \mathcal{N}(0,1) \quad \begin{array}{lll}
\text { Expectation } & E[Z]=\mu=0 \\
& \text { Variance } & \operatorname{Var}(Z)=\sigma^{2}=1
\end{array}
$$

Note: not a new distribution; just a special case of the Normal
Other names: Unit Normal

CDF of Z defined as: $P(Z \leq z)=\Phi(Z)$

Φ has been numerically computed

Standard Normal Table

An entry in the table is the area under the curve to the left of $z, P(Z \leq z)=\Phi(z)$.

$$
P(Z \leq 1.31)=\Phi(1.31)
$$

History fact: Standard Normal Table

TABLES

SERVANT
au Galcul des refractions APPROCHANTES DE L'HORIZON.

TABLE PREMIERE.
Intégrales de $e^{-t t} d t$, depuis une valeur quelconque de t jusqu'à t infinie,

t	Intitgrale.	Diff. prem.	Diff. II.	Diff. III.
0,00	0,88622692	999968	$20 \mathbf{1}$	$\mathbf{1 9 9}$
0,01	0,87622724	999767	400	$\mathbf{1} 99$
0,02	086622057	999367	599	200
0,03	$0,8562.3590$	998768	799	199
0,04	0,84624822	997969	998	197
0,05	0,83626853	99697 I	1195	199
0,06	0,82629882	995776	1394	196

The first Standard Normal Table was computed by Christian Kramp, French astronomer (1760-1826), in Analyse des Réfractions Astronomiques et Terrestres, 1799

Used a Taylor series expansion to the third power

[^1]
Probabilities for a general Normal RV

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. To compute the CDF $P(X \leq x)=F(x)$, we use Φ, the CDF for the Standard Normal $Z \sim \mathcal{N}(0,1)$:

$$
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Proof:

$$
\begin{aligned}
F(x) & =P(X \leq x) \\
& =P(X-\mu \leq x-\mu)=P(\frac{\overbrace{X-\mu}^{\sigma}}{\text { detine anew }} \leq \frac{x-\mu}{\sigma}) \quad \text { Algebra }+\sigma>0 \\
& =P\left(Z \leq \frac{x-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{aligned}\left\{\begin{array}{l}
\cdot \frac{x-\mu}{\sigma}=\frac{1}{\sigma} X-\frac{\mu}{\sigma} \text { is a linear transform of } X . \\
\cdot \text { This is distributed as } \mathcal{N}\left(\frac{1}{\sigma} \mu-\frac{\mu}{\sigma}, \frac{1}{\sigma^{2}} \sigma^{2}\right)=\mathcal{N}(0,1) \\
\cdot \text { In other words, } \frac{x-\mu}{\sigma}=Z \sim \mathcal{N}(0,1) \text { with CDF } \Phi .
\end{array}\right.
$$

Probabilities for a general Normal RV

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. To compute the CDF $P(X \leq x)=F(x)$, we use Φ, the CDF for the Standard Normal $Z \sim \mathcal{N}(0,1)$:

$$
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Proof:

$$
\begin{array}{rlr}
F(x) & =P(X \leq x) \\
& =P(X-\mu \leq x-\mu)=P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) \quad \begin{array}{l}
\text { Definition of CDF } \\
\\
\end{array}=P\left(Z \leq \frac{x-\mu}{\sigma}\right) \quad \text { Algebra }+\sigma>0
\end{array}
$$

Campus bikes

You spend some minutes, X, traveling between classes.

- Average time spent: $\mu=4$ minutes
- Variance of time spent: $\sigma^{2}=2$ minutes 2

Suppose X is normally distributed. What is the probability you spend ≥ 6 minutes traveling?

$X \sim \mathcal{N}\left(\mu=4, \sigma^{2}=2\right) \quad X P(X \geq 6)=\int_{6}^{\infty} f(x) d x \quad$ (no analytic solution)

1. Compute $z=\frac{(x-\mu)}{\sigma}$

$$
P(X \geq 6)=1-F_{x}(6)
$$

$=1-\Phi\left(\frac{6-4}{\sqrt{2}}\right)$
$\approx 1-\Phi(1.41)$
2. Look up $\Phi(z)$ in table

$$
\begin{aligned}
1 & -\Phi(1.41) \\
& \approx 1-0.9207 \\
& =0.0793
\end{aligned}
$$

Is there an easier way? (yes)

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. What is $P(X \leq x)=F(x)$?

- Use Python

```
from scipy import stats SciPy reference:
X = stats.norm(mu, std) https://docs.sciip.org/doc/sciip/refere
X.cdf(x)

I'm not sure why Python decided to parameterize stats.norm around the standard deviation instead of the variance, but it did. ©

Exercises

\section*{Get your Gaussian On}

Let \(X \sim \mathcal{N}\left(\mu=3, \sigma^{2}=16\right)\). Std deviation \(\sigma=4\). 1. \(P(X>0)=1-P(X<0)\)
\[
=1-F(0)
\]
\[
=1-\phi\left(\frac{0-3}{4}\right)
\]
\[
=1-\phi\left(\frac{-3}{4}\right)
\]
\[
=1-\left(1-\phi\left(\frac{3}{4}\right)\right)
\]
\[
=\phi\left(\frac{3}{4}\right)=\underbrace{0,7734}_{\text {best to use pythmis scipy package }}
\]

\section*{Get your Gaussian On}

Let \(X \sim \mathcal{N}\left(\mu=3, \sigma^{2}=16\right)\).
Note standard deviation \(\sigma=4\).
How would you write each of the below probabilities as a function of the standard normal CDF, \(\Phi\) ?
- If \(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\), then \(F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)\)
- Symmetry of the PDF of Normal RV implies \(\Phi(-z)=1-\Phi(z)\)
1. \(P(X>0)\)
2. \(P(2<X<5)\)
3. \(P(|X-3|>6)\)

\section*{Get your Gaussian On}

Let \(X \sim \mathcal{N}\left(\mu=3, \sigma^{2}=16\right)\). Std deviation \(\sigma=4\).
1. \(P(X>0)\)
2. \(P(2<X<5)=F(5)-F(2)\)
\[
\begin{aligned}
& =\phi\left(\frac{5-3}{4}\right)-\phi\left(\frac{2-3}{4}\right) \\
& =\phi\left(\frac{1}{2}\right)-\phi\left(\frac{-1}{4}\right)
\end{aligned}
\]
- If \(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\), then
\[
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\]
- Symmetry of the PDF of
Normal RV implies Normal RV implies
\[
\Phi(-z)=1-\Phi(z)
\]
\[
=\phi\left(\frac{1}{2}\right)-\left(1-\phi\left(\frac{1}{4}\right)\right)
\]
\[
\begin{aligned}
& =\phi\left(\frac{1}{2}\right)_{\pi}+\phi\left(\frac{1}{4}\right)-1 \\
& =0,2902
\end{aligned}
\]

\section*{Get your Gaussian On}

Let \(X \sim \mathcal{N}\left(\mu=3, \sigma^{2}=16\right)\). Std deviation \(\sigma=4\).
1. \(P(X>0)\)
2. \(P(2<X<5)\)
3. \(P(|X-3|>6)\)

Compute \(z=\frac{(x-\mu)}{\sigma}\)

\section*{Look up \(\Phi(z)\) in table}
\[
\begin{aligned}
& P(X<-3)+P(X>9) \\
& =F(-3)+(1-F(9)) \\
& =\Phi\left(\frac{-3-3}{4}\right)+\left(1-\Phi\left(\frac{9-3}{4}\right)\right)
\end{aligned}
\]

Normal RV implies
\(\Phi(-x)=1-\Phi(x)\)
If \(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\), then
\[
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\]
- Symmetry of the PDF of

\section*{Get your Gaussian On}

Let \(X \sim \mathcal{N}\left(\mu=3, \sigma^{2}=16\right)\). Std deviation \(\sigma=4\).
1. \(P(X>0)\)
2. \(P(2<X<5)\)
3. \(P(|X-3|>6)\)

Compute \(\mathrm{z}=\frac{(x-\mu)}{\sigma}\)
\[
\begin{aligned}
& P(X<-3)+P(X>9) \\
& =F(-3)+(1-F(9)) \\
& =\Phi\left(\frac{-3-3}{4}\right)+\left(1-\Phi\left(\frac{9-3}{4}\right)\right)-
\end{aligned}
\]
- If \(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\), then
\[
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\]
- Symmetry of the PDF of Normal RV implies \(\Phi(-x)=1-\Phi(x)\)

Look up \(\Phi(\mathrm{z})\) in table
\[
\begin{aligned}
\longrightarrow & =\Phi\left(-\frac{3}{2}\right)+\left(1-\Phi\left(\frac{3}{2}\right)\right) \\
& =2\left(1-\Phi\left(\frac{3}{2}\right)\right) \\
& \approx 0.1337
\end{aligned}
\]

\section*{Noisy Wires}

Send a voltage of 2 V or -2 V on wire (to denote 1 and 0 , respectively).
- \(X=\) voltage sent (2 or -2 )
- \(Y=\) noise, \(Y \sim \mathcal{N}(0,1)\)
- \(R=X+Y\) voltage received.

Decode: \(\quad \begin{array}{ll}1 & \text { if } R \geq 0.5 \\ & 0 \text { otherwise. }\end{array}\)

1. What is P (decoding error | original bit is 1 )?
i.e., we sent 1, but we decoded as 0?
2. What is \(P(\) decoding error | original bit is 0\()\) ?

These probabilities are unequal. Why might this be useful?

\section*{Noisy Wires}

Send a voltage of 2 V or -2 V on wire (to denote 1 and 0 , respectively).
- \(X=\) voltage sent (2 or -2 )
- \(Y=\) noise, \(Y \sim \mathcal{N}(0,1)\)
- \(R=X+Y\) voltage received.

Decode: \(\quad \begin{aligned} & 1 \text { if } R \geq 0.5 \\ & \\ & 0 \text { otherwise. }\end{aligned}\)

1. What is P (decoding error | original bit is 1 )?
i.e., we sent 1, but we decoded as 0 ?
\[
\begin{aligned}
P(R<0.5 \mid X=2) & =P(2+Y<0.5)=P(Y<-1.5) \quad Y \text { is Standard Normal } \\
& =\Phi(-1.5)=1-\Phi(1.5) \approx 0.0668
\end{aligned}
\]

\section*{Noisy Wires}

Send a voltage of 2 V or -2 V on wire (to denote 1 and 0 , respectively).
- \(X=\) voltage sent (2 or -2 )
- \(Y=\) noise, \(Y \sim \mathcal{N}(0,1)\)
- \(R=X+Y\) voltage received.
Decode: \(\quad\)\begin{tabular}{ll}
1 & if \(R \geq 0.5\) \\
& 0 otherwise.
\end{tabular}

1. What is P (decoding error | original bit is 1 )? i.e., we sent 1, but we decoded as 0?
0.0668
2. What is P (decoding error | original bit is 0\()\) ?
```

1-\phi(2,5)

```
\[
P(R \geq 0.5 \mid X=-2)=P(-2+Y \geq 0.5)=P(Y \geq 2.5) \approx 0.0062
\]

Asymmetric decoding probability: We would like to avoid mistaking a 0 for 1 . Errors the other way are tolerable.

\title{
Sampling with the Normal RV
}

\section*{ELO ratings}


What is the probability that the Warriors win? More generally: How can you model zero-sum games?

\section*{ELO ratings}

Each team has an ELO score \(S\), calculated based on its past performance.
- Each game, a team has ability \(A \sim \mathcal{N}\left(S, 200^{2}\right)\).
- The team with the higher sampled ability wins.
What is the probability that Warriors win
this game?
Want: \(P(\) Warriors win \()=P\left(A_{W}>A_{o}\right)\)



\section*{ELO ratings}

Want: \(P(\) Warriors win \()=P\left(A_{W}>A_{O}\right)\)
from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000
nSuccess = 0
for i in range(NTRIALS):
w = stats.norm.rvs(WARRIORS_ELO, STDEV)
o = stats.norm.rvs(OPPONENT_ELO, STDEV)
if \(w>0\) : nSuccess += 1
print("Warriors sampled win fraction", float(nSuccess) / NTRIALS)
\(\approx 0.7488\), calculated by sampling

Warriors \(A_{W} \sim \mathcal{N}\left(S=1657,200^{2}\right)\)


Opponents \(A_{O} \sim \mathcal{N}\left(S=1470,200^{2}\right)\)


\section*{Is there a better way?}

\section*{\(P\left(A_{W}>A_{O}\right)\)}
- This is a probability of an event involving two continuous random variables! joint continuous random variables
- We'll solve this problem analytically in less than two weeks' time.

Big goal for next lecture: Events involving two discrete random variables. Stay tuned!```


[^0]:    (tell Jerry if you solve this analytically and we'll be famous together)

[^1]:    integral from $x=0.03$ to infinity of $\mathrm{e}^{\wedge}\left\{-\mathrm{x}^{\wedge} 2\right\}$
    $\int_{\Sigma^{0}}^{\pi}$ Extended Keyboard $\boldsymbol{\underline { 1 }}$ Upload

    Definite integral:
    $\int_{0.03}^{\infty} e^{-x^{2}} d x=0.856236$

