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def A Normal random variable 𝑋 is defined as follows:

Other names: Gaussian random variable
 

Normal	Random	Variable
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Carl	Friedrich	Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

Did not invent Normal distribution but rather popularized it.
4

just wow!
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Why	the	Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally
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That’s what they 
want you to believe…
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Why	the	Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally
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Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see
this in 3 weeks)
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Okay,	so	why	the	Normal?
Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions
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value

How do you model student heights?
• Suppose you have data from one classroom.

Fits perfectly!
But what about in 
another classroom?
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A Gaussian maximizes entropy for a 
given mean and variance.

Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions
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Okay,	so	why	the	Normal?
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value

How do you model student heights?
• Suppose you have data from one classroom.

• Same mean/var
• Generalizes well
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Stay critical of how to model real-
world phenomena.

Why	the	Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally
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Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see
this in 3 weeks)because it’s well understood
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Anatomy	of	a	beautiful	equation
Let 𝑋~𝒩 𝜇, 𝜎% .

The PDF of 𝑋 is defined as:
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Normal	Random	Variable

Match PDF to distribution:

1.  𝒩 0, 1

2.  𝒩(−2, 0.5)

3.  𝒩 0, 5

4.  𝒩(0, 0.2)
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Getting	to	class
You spend some minutes, 𝑋, traveling
between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎% = 2 minutes2

Suppose 𝑋 is normally distributed. What is the 
probability you spend ≥ 6 minutes traveling?
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𝑋~𝒩(𝜇 = 4, 𝜎% = 2)

𝑃 𝑋 ≥ 6 = 9
'

(
𝑓(𝑥)𝑑𝑥 = 9

'

( 1
2 𝜋

𝑒!	
"	!* !

* 𝑑𝑥

(tell Jerry if you solve this analytically and we’ll be famous together)
Love and Anger in the 

Same Formula
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Computing	probabilities	with	Normal	RVs
For a Normal RV 𝑋~𝒩 𝜇, 𝜎% ,	its CDF has no closed form.

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 = -
&'

( 1
𝜎 2𝜋

𝑒&	
*	&	+ +

,-+ 𝑑𝑦

However, we can solve for probabilities numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎
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Cannot be 
solved 

analytically

⚠

CDF of
𝑋~𝒩 𝜇, 𝜎#

A function that has been 
solved numerically

To get here, we’ll first 
need to know some 

properties of Normal RVs.



Normal	RV:	
Properties

14
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Properties	of	Normal	RVs
Let 𝑋~𝒩 𝜇, 𝜎%  with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

1. Linear transformations of Normal RVs are also Normal RVs.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎"𝜎").

2. The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

15
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1.	Linear	transformations	of	Normal	RVs
Let 𝑋~𝒩 𝜇, 𝜎%  with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

Linear transformations of X are also Normal.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎"𝜎"

Proof:
• 𝐸 𝑌 = 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏 

• Var 𝑌 = Var 𝑎𝑋 + 𝑏 = 𝑎%Var 𝑋 = 𝑎%𝜎% 

• 𝑌 is also Normal
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Proof in Ross,
10th ed (Section 5.4)

Linearity of Expectation

Var 𝑎𝑋 + 𝑏 = 𝑎#Var 𝑋  
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2.	Symmetry	of	Normal	RVs
Let 𝑋~𝒩 𝜇, 𝜎%  with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

17
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Using	symmetry	of	the	Normal	RV
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1.  𝑃 𝑍 ≤ 𝑧
2.  𝑃 𝑍 < 𝑧
3.  𝑃 𝑍 ≥ 𝑧
4.  𝑃 𝑍 ≤ −𝑧
5.  𝑃 𝑍 ≥ −𝑧
6.  𝑃(𝑦 < 𝑍 < 𝑧)

A.  𝐹 𝑧   
B.  1 − 𝐹(𝑧) 
C.  𝐹 𝑧 − 𝐹(𝑦) 

= 𝐹 𝑧  

𝑧

𝑓(
𝑧)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1  with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧  and 𝐹 𝑦 , for some 𝑦, 𝑧 ≥ 0.

How do we compute the following probabilities?
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Using	symmetry	of	the	Normal	RV
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1.  𝑃 𝑍 ≤ 𝑧
2.  𝑃 𝑍 < 𝑧
3.  𝑃 𝑍 ≥ 𝑧
4.  𝑃 𝑍 ≤ −𝑧
5.  𝑃 𝑍 ≥ −𝑧
6.  𝑃(𝑦 < 𝑍 < 𝑧)

A.  𝐹 𝑧   
B.  1 − 𝐹(𝑧) 
C.  𝐹 𝑧 − 𝐹(𝑦) 

= 𝐹 𝑧  
= 𝐹 𝑧  
= 1 − 𝐹(𝑧) 
= 1 − 𝐹(𝑧) 
= 𝐹 𝑧  
= 𝐹 𝑧 − 𝐹(𝑦) 

Symmetry is particularly useful when 
computing probabilities of zero-mean 
Normal RVs.

-3 -2 -1 0 1 2 3

+"−"

𝑧

𝑓(
𝑧)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1  with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧  and 𝐹 𝑦 , for some 𝑦, 𝑧 ≥ 0.

How do we compute the following probabilities?



Normal	RV:
Computing	
probability

20
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Computing	probabilities	with	Normal	RVs
Let 𝑋~𝒩 𝜇, 𝜎% .

To compute the CDF, 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 :
• We cannot analytically solve the integral, as it has no closed form.
• … but we can solve numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

21

CDF of the
Standard Normal, 𝑍
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The Standard Normal random variable 𝑍 is defined as follows:

Other names: Unit Normal

CDF of 𝑍 defined as:

Standard	Normal	RV,	𝑍

22

𝑍~𝒩(0, 1) Variance  

Expectation   𝐸 𝑍 = 𝜇 = 0

Var 𝑍 = 𝜎% = 1

𝑃 𝑍 ≤ 𝑧 = Φ(𝑧)

Note: not a new distribution; just
a special case of the Normal
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Φ	has	been	numerically	computed

23

Standard Normal Table
An entry in the table is the area under the curve to the left of z, P(Z ≤ z) = Φ(z).

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

! = 1.31

𝑃 𝑍 ≤ 1.31 = Φ(1.31) 

𝑓
𝑧

𝑧

Φ(𝑧)

Standard Normal Table only has 
probabilities Φ(𝑧) for 𝑧 ≥ 0.
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History	fact:	Standard	Normal	Table

24

The first Standard Normal Table was 
computed by Christian Kramp, French 
astronomer (1760–1826), in Analyse 
des Réfractions Astronomiques et 
Terrestres, 1799
Used a Taylor series expansion to the 
third power
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Probabilities	for	a	general	Normal	RV
Let 𝑋~𝒩 𝜇, 𝜎% . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

Proof:

25

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃

𝑋 − 𝜇
𝜎

≤
𝑥 − 𝜇
𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇
𝜎

Algebra + 𝜎 > 0
Definition of CDF

• $%&
'
= (

'
𝑋 − &

'
 is a linear transform of 𝑋.

• This is distributed as 𝒩 (
'
𝜇 − &

'
, (
'!
𝜎# =𝒩 0,1

• In other words, $%&
'
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇
𝜎
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Probabilities	for	a	general	Normal	RV
Let 𝑋~𝒩 𝜇, 𝜎% . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

Proof:
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𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃

𝑋 − 𝜇
𝜎

≤
𝑥 − 𝜇
𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇
𝜎

Algebra + 𝜎 > 0
Definition of CDF

• $%&
'
= (

'
𝑋 − &

'
 is a linear transform of 𝑋.

• This is distributed as 𝒩 (
'
𝜇 − &

'
, (
'!
𝜎# =𝒩 0,1

• In other words, $%&
'
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇
𝜎

1. Compute 𝑧 = 𝑥 − 𝜇 /𝜎.
2. Look up Φ 𝑧 	in Standard Normal table.
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Campus	bikes
You spend some minutes, 𝑋, traveling between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎# = 2 minutes2

Suppose 𝑋 is normally distributed. What is the probability 
you spend ≥ 6 minutes traveling?

27

𝑋~𝒩(𝜇 = 4, 𝜎% = 2) 𝑃 𝑋 ≥ 6 = 9
'

(
𝑓(𝑥)𝑑𝑥 (no analytic solution)

1. Compute 𝑧 = "!#
&

2. Look up Φ(𝑧) in table

𝑃 𝑋 ≥ 6 = 1	 − 	𝐹"(6)

= 1	 − Φ
6 − 4
2

×

≈ 1	 − Φ 1.41

1	 − Φ 1.41  
 ≈ 1	 − 0.9207 
 = 0.0793 
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Is	there	an	easier	way?	(yes)
Let 𝑋~𝒩 𝜇, 𝜎% . What is 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ?

• Use Python

I'm not sure why Python decided to parameterize stats.norm around the 
standard deviation instead of the variance, but it did. J

28

from scipy import stats
X = stats.norm(mu, std)
X.cdf(x)

SciPy reference:
https://docs.scipy.org/doc/scipy/refere
nce/generated/scipy.stats.norm.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html


Exercises

29



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Get	your	Gaussian	On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1.  𝑃 𝑋 > 0

30

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 − Φ 𝑧
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Get	your	Gaussian	On

Let 𝑋~𝒩 𝜇 = 3, 𝜎, = 16 .
Note standard deviation 𝜎 = 4.
How would you write each of the below
probabilities as a function of the
standard normal CDF, Φ?

1.  𝑃 𝑋 > 0
2.  𝑃 2 < 𝑋 < 5
3.  𝑃 𝑋 − 3 > 6

31

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 − Φ 𝑧
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Get	your	Gaussian	On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1.  𝑃 𝑋 > 0
2.  𝑃 2 < 𝑋 < 5
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• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 − Φ 𝑧
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Get	your	Gaussian	On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1.  𝑃 𝑋 > 0
2.  𝑃 2 < 𝑋 < 5
3.  𝑃 𝑋 − 3 > 6
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Compute 𝑧 = "!#
&

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 − Φ 𝑥

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

Look up Φ(z) in table
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Get	your	Gaussian	On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1.  𝑃 𝑋 > 0
2.  𝑃 2 < 𝑋 < 5
3.  𝑃 𝑋 − 3 > 6
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Compute z = "!#
&

Look up Φ(z) in table

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

= Φ −
3
2
+ 1	 − Φ

3
2

= 2 1	 − Φ
3
2

≈ 0.1337

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 − Φ 𝑥



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Noisy	Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode:   1   if 𝑅 ≥ 0.5
    0  otherwise. 
1. What is P(decoding error | original bit is 1)?

i.e., we sent 1, but we decoded as 0?
2. What is P(decoding error | original bit is 0)?

These probabilities are unequal. Why might this be useful?
35

0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

𝐹 *
(𝑟
)

𝑅 = 𝑟
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Noisy	Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode:   1   if 𝑅 ≥ 0.5
    0  otherwise. 
1. What is P(decoding error | original bit is 1)?

i.e., we sent 1, but we decoded as 0?
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𝐹 *
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𝑅 = 𝑟

𝑃 𝑅 < 0.5|	𝑋 = 2 = 𝑃 2 + 𝑌 < 0.5 = 𝑃 𝑌 < −1.5 Y is Standard Normal

= Φ −1.5 = 1 − Φ 1.5 ≈ 0.0668
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Noisy	Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode:   1   if 𝑅 ≥ 0.5
    0  otherwise. 
1. What is P(decoding error | original bit is 1)?

i.e., we sent 1, but we decoded as 0?
2. What is P(decoding error | original bit is 0)?

37

0
0.1
0.2
0.3
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-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

𝐹 *
(𝑟
)

𝑅 = 𝑟

0.0668

≈ 0.0062𝑃 𝑅 ≥ 0.5|	𝑋 = −2 = 𝑃 −2 + 𝑌 ≥ 0.5 = 𝑃 𝑌 ≥ 2.5
Asymmetric decoding probability: We would like to avoid 
mistaking a 0 for 1. Errors the other way are tolerable.



Sampling	with	
the	Normal	RV

38
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ELO	ratings

39

What is the probability that the Warriors win?
More generally: How can you model zero-sum 
games?
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ELO	ratings
Each team has an ELO score 𝑆, 
calculated based on its
past performance.
• Each game, a team has

ability 𝐴~𝒩 𝑆, 200% .
• The team with the higher

sampled ability wins.
What is the probability
that Warriors win
this game?

Want: 𝑃 Warriors win = 𝑃 𝐴7 > 𝐴8

40
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ELO	ratings

41

Want: 𝑃 Warriors win = 𝑃 𝐴7 > 𝐴8

≈ 0.7488, calculated by sampling

from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000

nSuccess = 0
for i in range(NTRIALS):
  w = stats.norm.rvs(WARRIORS_ELO, STDEV)
  o = stats.norm.rvs(OPPONENT_ELO, STDEV)
  if w > o: nSuccess += 1

print("Warriors sampled win fraction", 
  float(nSuccess) / NTRIALS)
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Is	there	a	better	way?

𝑃 𝐴! > 𝐴"
• This is a probability of an event involving 

two continuous random variables!
• We’ll solve this problem analytically in less than two weeks’ time.

Big goal for next lecture: Events involving two discrete random variables.
Stay tuned!

42

actual depiction of someone understanding 
joint continuous random variables


