12: Independent RVs

Jerry Cain
April $26^{\text {th }}, 2024$

Lecture Discussion on Ed

Sums of independent Binomial RVs

Independent discrete RVs

Recall the definition of independent events E and F :

$$
P(E F)=P(E) P(F)
$$

Two discrete random variables X and Y are independent if:

$$
\begin{aligned}
& \text { for all } x, y \text { : } \\
& \qquad P(X=x, Y=y)=P(X=x) P(Y=y)
\end{aligned}
$$

Different notation,
same idea:

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

- Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)
- If two variables are not independent, they are termed dependent.

Sum of independent Binomials

$$
\begin{gathered}
X \sim \operatorname{Bin}\left(n_{1}, p\right) \\
Y \sim \operatorname{Bin}\left(n_{2}, p\right)
\end{gathered} \quad \quad X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)
$$

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z=\#$ successes in $n_{1}+n_{2}$ independent trials, each with success probability $p . Z \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$ and $Z=X+Y$ as well.

Holds in general case:

$$
X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right)
$$

X_{i} independent for $i=1, \ldots, n$

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}\left(\sum_{i=1}^{n} n_{i}, p\right)
$$

Coin flips

Flip a coin with probability p of heads a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent?
2. Are X and Y independent?

Coin flips

Flip a coin with probability p of heads a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent? X

Counterexample: What if $Z=0$?
2. Are X and Y independent? ∇

$$
\begin{aligned}
P(X & =x, Y=y)=P\binom{\text { first } n \text { flips have } x \text { heads }}{\text { and next } m \text { flips have } y \text { heads }}
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { of mutually exclusive }:\left(\begin{array}{l}
n \\
\text { outcomes in event } \\
x
\end{array}\right)\binom{m}{y} \\
\\
\\
=\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{y} p^{y}(1-p)^{m-y} \\
=p^{x}(1-p)^{n-x} p^{y}(1-p)^{m-y}
\end{array} \\
\\
=P(X=x) P(Y=y)
\end{gathered} \begin{gathered}
\begin{array}{c}
\text { This probability (found through } \\
\text { counting) is the product of the } \\
\text { marginal PMFs. }
\end{array}
\end{gathered}
$$

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k, Y=n-k)
$$

In particular, for independent discrete random variables X and Y :

$$
P(X+Y=n)=\underbrace{\sum_{k} P(X=k) P(Y=n-k)}_{\text {the convolution of } p_{X} \text { and } p_{Y}}
$$

Insight into convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$

Suppose X and Y are independent, both with support $\{0,1, \ldots, n, \ldots\}$:

		x						
		0	1	2	...	n	$n+1$...
	0					\checkmark		
			
	$n-2$			\checkmark				
Y	$n-1$		\checkmark					
	n	\checkmark						
	$n+1$							
	...							

- $\sqrt{ }$: event where $X+Y=n$
- Each event has probability: $P(X=k, Y=n-k)$
$=P(X=k) P(Y=n-k)$
(because X, Y are independent)
- $P(X+Y=n)=$ sum of mutually exclusive events

Sum of 2 dice rolls

The distribution of a sum of $\underline{2}$ dice rolls is a convolution of $\underline{2}$ PMFs.

Example:
$P(X+Y=4)=$

$$
\begin{aligned}
& P(X=1) P(Y=3) \\
& +P(X=2) P(Y=2) \\
& +P(X=3) P(Y=1)
\end{aligned}
$$

Sum of to dice rolls (fun preview)

Sum of independent Poissons

$$
\underset{X, Y \text { independent }}{X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right)}
$$

$X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$

Proof (just for reference):

$$
\begin{aligned}
& P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \\
& \quad=\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\
& \quad=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}=\underbrace{\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n}}_{\text {U. }}
\end{aligned}
$$

X and Y independent, convolution

PMF of Poisson RVs

Binomial Theorem:
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$
Stanford University
12

Sum of independent Poissons

$$
\underset{X, Y \text { independent }}{X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right)} \quad X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)
$$

- n servers with independent number of requests/minute
- Server i 's requests each minute can be modeled as $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$

What is the probability that the total number of web requests received at all servers in the next minute exceeds 10 ?

Exercises

Independent questions

1. Let $X \sim \operatorname{Bin}(30,0.01)$ and $Y \sim \operatorname{Bin}(50,0.02)$ be independent RVs.

- How do we compute $P(X+Y=2)$ using a Poisson approximation?
- How do we compute $P(X+Y=2)$ exactly?

2. Let $N=\#$ of requests to a web server per day. Suppose $N \sim \operatorname{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot ($1-p$).
- Let X be \# of human requests/day, and Y be \# of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

1. Approximating the sum of independent Binomial RVs

Let $X \sim \operatorname{Bin}(30,0.01)$ and $Y \sim \operatorname{Bin}(50,0.02)$ be independent RVs.

- How do we compute $P(X+Y=2)$ using a Poisson approximation?
- How do we compute $P(X+Y=2)$ exactly?

$$
\begin{aligned}
P(X+Y=2) & =\sum_{k=0}^{2} P(X=k) P(Y=2-k) \\
& =\sum_{k=0}^{2}\binom{30}{k} 0.01^{k}(0.99)^{30-k}\binom{50}{2-k} 0.02^{2-k} 0.98^{50-(2-k)} \approx 0.2327
\end{aligned}
$$

2. Web server requests

Let $N=\#$ of requests to a web server per day. Suppose $N \sim \operatorname{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot ($1-p$).
- Let X be \# of human requests/day, and Y be \# of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

$$
\begin{array}{rlrl}
P & (X & =x, Y=y)= & P(X=x, Y=y \mid N=x+y) P(N=x+y) \\
+P(X=x, Y=y \mid N \neq x+y) P(N \neq x+y)
\end{array} \quad \begin{aligned}
& \text { Law of Total } \\
&=P(X=x \mid N=x+y) P(Y=y \mid X=x, N=x+y) P(N=x+y)
\end{aligned} \quad \begin{aligned}
& \text { Chain Rule }
\end{aligned}
$$

Expectation of Common RVs

Linearity of Expectation: Important

Expectation is a linear mathematical operation. If $X=\sum_{i=1}^{n} X_{i}$:

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of (X_{1}, \ldots, X_{n}) is unknown), you can still compute expectation of X.
- Problem-solving key:

$$
X=\sum_{i=1}^{n} X_{i}
$$

Most common use cases: Define X_{i} such that

Expectations of common RVs: Binomial

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$

Recall: $\operatorname{Bin}(1, p)=\operatorname{Ber}(p)$

$$
X=\sum_{i=1}^{n} X_{i}
$$

Let $X_{i}=i$ th trial is heads $X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p$
\# of successes in n independent trials with probability of success p

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} p=n p
$$

Expectations of common RVs: Negative Binomial

$$
Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}
$$

Recall: $\operatorname{NegBin}(1, p)=\operatorname{Geo}(p)$

$$
Y=\sum_{i=1}^{?} Y_{i} \quad \text { 1. How should we define } Y_{i} ?
$$

Expectations of common RVs: Negative Binomial

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

\# of independent trials with probability of success p until r successes

Recall: $\operatorname{NegBin}(1, p)=\operatorname{Geo}(p)$

$$
Y=\sum_{i=1}^{r} Y_{i}
$$

Let $Y_{i}=\#$ trials to get i th success (after

$$
(i-1) \text { th success })
$$

$$
Y_{i} \sim \operatorname{Geo}(p), E\left[Y_{i}\right]=\frac{1}{p}
$$

$$
E[Y]=E\left[\sum_{i=1}^{r} Y_{i}\right]=\sum_{i=1}^{r} E\left[Y_{i}\right]=\sum_{i=1}^{r} \frac{1}{p}=\frac{r}{p}
$$

