12: Independent RVs

Jerry Cain April 26th, 2024

<u>Lecture Discussion on Ed</u>

Sums of independent Binomial RVs

Independent discrete RVs

Different notation.

same idea:

Recall the definition of independent events E and F:

$$P(EF) = P(E)P(F)$$

Two discrete random variables X and Y are independent if:

all x, y: P(X = x, Y = y) = P(X = x)P(Y = y) $p(X = x, Y = y) = p_X(x)p_Y(y)$ $p(X = x, Y = y) = p_X(x)p_Y(y)$ $= p(X = x \mid Y = y) P(Y = y)$ $= p(X = x \mid Y = y) P(Y = y)$ for all x, y: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

- Intuitively: knowing value of *X* tells us nothing about the distribution of *Y* (and vice versa)
- If two variables are not independent, they are termed dependent.

Sum of independent Binomials

$$X \sim \text{Bin}(n_1, p)$$

 $Y \sim \text{Bin}(n_2, p)$
 $X + Y \sim \text{Bin}(n_1 + n_2, p)$
 $X, Y \text{ independent}$

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define Z = # successes in $n_1 + n_2$ independent trials, each with success probability $p. Z \sim Bin(n_1 + n_2, p)$ and Z = X + Y as well.

Holds in general case:

$$X_i \sim \text{Bin}(n_i, p)$$

 X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^{n} X_i \sim \text{Bin}(\sum_{i=1}^{n} n_i, p)$$

If only it were

Coin flips

Flip a coin with probability p of heads a total of n + m times.

Let X = number of heads in first n flips. $X \sim \text{Bin}(n, p)$

Y = number of heads in next m flips. $Y \sim \text{Bin}(m, p)$

Z = total number of heads in n + m flips.

- 1. Are *X* and *Z* independent?
- 2. Are *X* and *Y* independent?

Coin flips

Flip a coin with probability p of heads a total of n+m times.

X = number of heads in first n flips. $X \sim \text{Bin}(n, p)$ Let

Y = number of heads in next m flips. $Y \sim \text{Bin}(m, p)$

Z = total number of heads in n + m flips.

- 1. Are X and Z independent? \times
- 2. Are X and Y independent?

Counterexample: What if Z = 0?

Z= b? That forces X to be O as well. that's dependence.

 $P(X = x, Y = y) = P\left(\begin{array}{c} \text{first } n \text{ flips have } x \text{ heads} \\ \text{and next } m \text{ flips have } y \text{ heads} \end{array}\right)$

$$= \binom{n}{x} p^{x} (1-p)^{n-x} \binom{m}{y} p^{y} (1-p)^{m-y}$$

$$= P(X = x) P(Y = y)$$
an thing y

of mutually exclusive : $\binom{n}{n}$ outcomes in event *P*(each outcome) $= p^{x}(1-p)^{n-x}p^{y}(1-p)^{m-y}$

> This probability (found through counting) is the product of the marginal PMFs.

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables *X* and *Y*:

we saw ith and one we have example example
$$k. Y = n - k$$

$$P(X+Y=n) = \sum_{k} P(X=k, Y=n-k)$$

In particular, for independent discrete random variables X and Y:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$
the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Suppose X and Y are independent, both with support $\{0, 1, ..., n, ...\}$:

					X			
		0	1	2		n	n+1	
	0					V		
					•••			
	n-2			V				
Y	n-1		V					
	$\mid n \mid$	>						
	n+1							

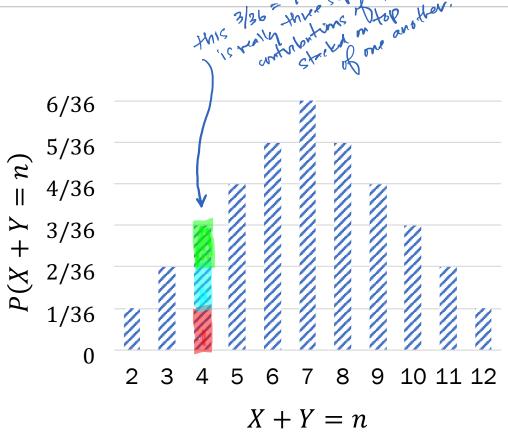
- \checkmark : event where X + Y = n
- Each event has probability: $P(X = k, Y = n k) \stackrel{\text{left}}{\sim} 1 \frac{1}{2} \frac{1}{2}$ = P(X = k)P(Y = n - k)

(because X, Y are independent)

• P(X + Y = n) = sum ofmutually exclusive events

Stanford University 9

Sum of 2 dice rolls

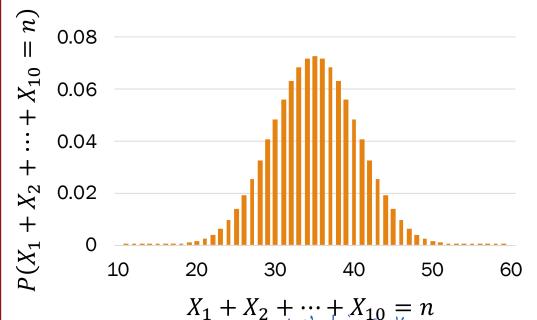


The distribution of a sum of 2 dice rolls is a convolution of 2 PMFs.

Example:

$$P(X + Y = 4) =$$
 $P(X = 1)P(Y = 3)$
 $+ P(X = 2)P(Y = 2)$
 $+ P(X = 3)P(Y = 1)$

Sum of 10 dice rolls (fun preview)



The distribution of a sum of 10 dice rolls is a convolution 10 PMFs.

> Looks kinda Normal...??? (more on this in a few weeks)

Sum of independent Poissons

$$X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$$

 $X, Y \text{ independent}$

$$X + Y \sim Poi(\lambda_1 + \lambda_2)$$

Proof (just for reference):

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k)P(Y = n - k)$$

$$= \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} = e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k! (n-k)!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

generalizes to multiple independent Poissons.

X and *Y* independent, convolution

PMF of Poisson RVs

Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Stanford University 12

Sum of independent Poissons

$$X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$$

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$
 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$
 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$

- *n* servers with independent number of requests/minute
- Server i's requests each minute can be modeled as $X_i \sim Poi(\lambda_i)$

What is the probability that the total number of web requests received at all servers in the next minute exceeds 10?

Let
$$\lambda = \sum_{i=1}^{\infty} \lambda_i$$
 $P(X>10) = 1 - P(X \le 10) k$
= $1 - e^{\lambda} \sum_{k=0}^{\infty} k!$

Exercises

Independent questions

- 1. Let $X \sim \text{Bin}(30, 0.01)$ and $Y \sim \text{Bin}(50, 0.02)$ be independent RVs.
 - How do we compute P(X + Y = 2) using a Poisson approximation?
 - How do we compute P(X + Y = 2) exactly?
- 2. Let N = # of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.
 - Each request independently comes from a human (prob. p), or bot (1 p).
 - Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

1. Approximating the sum of independent Binomial RVs

Let $X \sim \text{Bin}(30, 0.01)$ and $Y \sim \text{Bin}(50, 0.02)$ be independent RVs.

Approximate X with A~Poi (013), and approximate Y with B~Poi (1.0)

• How do we compute P(X + Y = 2) using a Poisson approximation? $P(X+Y=2) \approx P(A+B=2)$

impute
$$P(X + Y = 2)$$
 using a Poisson approximation?
 $= 2 \implies P(A + B = 2)$
Let $S = A + B$, so $\Rightarrow P(S = 2) = e^{-1.3} \frac{1.3^2}{2!} \approx 0.2302$
 $\Rightarrow P(S = 2) = e^{-1.3} \frac{1.3^2}{2!} \approx 0.2302$

• How do we compute P(X + Y = 2) exactly?

$$P(X + Y = 2) = \sum_{k=0}^{2} P(X = k)P(Y = 2 - k)$$

$$= \sum_{k=0}^{2} {30 \choose k} 0.01^{k} (0.99)^{30-k} {50 \choose 2-k} 0.02^{2-k} 0.98^{50-(2-k)} \approx 0.2327$$
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

because X and Y are and are

they are different.

2. Web server requests

Let N=# of requests to a web server per day. Suppose $N\sim Poi(\lambda)$.

- Each request independently comes from a human (prob. p), or bot (1-p).
- Let X be # of human requests/day, and Y be # of bot requests/day.

 Are X and Y independent? What are their requests X and Y independent? What are their requests X and Y independent X where X are X and Y independent X where X is X.

Are X and Y independent? What are their marginal PMFs?

$$P(X = x, Y = y) = P(X = x, Y = y | N = x + y) P(N = x + y)$$
 Law of Total Probability
$$+ P(X = x, Y = y | N \neq x + y) P(N \neq x + y)$$
 Chain Rule
$$= P(X = x | N = x + y) P(Y = y | X = x, N = x + y) P(N = x + y)$$
 Given $N = x + y$ indep. trials,
$$X | N = x + y \sim \text{Bin}(x + y, p)$$

$$= \frac{(x + y)!}{x! y!} e^{-\lambda} \frac{(\lambda p)^x (\lambda (1 - p))^y}{(x + y)!} = e^{-\lambda p} \frac{(\lambda p)^x}{x!} e^{-\lambda (1 - p)} \frac{(\lambda (1 - p))^y}{y!}$$
 Yes, X and Y are independent!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 17

Expectation of Common RVs

Linearity of Expectation: Important

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the **distribution** of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute **expectation** of X.
- Problem-solving key: Define X_i such that $X = \sum X_i$

$$X = \sum_{i=1}^{n} X_i$$

Most common use cases:

- E[X_i] easy to calculate
 Sum of dependent RVs

$$X \sim Bin(n, p)$$
 $E[X] = np$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p)$, $E[X_i] = p$
$$E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$$

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
 $E[Y] = \frac{r}{p}$

 $Y \sim \text{NegBin}(r, p)$ $E[Y] = \frac{r}{p}$ # of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p) without probability of success p until p we will probability of success p until p we will probability of success p until p and p we will probability of success p until p and p and p and p are p are p and p are p are p and p are p are p and p are p and p are p are p are p and p are p are p and p are p are p are p and p are p are p and p are p ar

$$Y = \sum_{i=1}^{?} Y_i$$

 $Y = \sum_{i=1}^{n} Y_i$ 1. How should we define Y_i ?

After Y_i to be number of trials needed to produce Y_i the success after Y_i .

2. How many terms are in our summation?

We need & successes, so We need v terms. Y = Y, + Y2 + Y2 + ... + Yx

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
 $E[Y] = \frac{r}{p}$

of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{r} Y_i$$

Let $Y_i = \#$ trials to get ith success (after

$$(i-1)$$
th success)
 $Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{n}$

$$E[Y] = E\left[\sum_{i=1}^{r} Y_i\right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$$