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Coupon	collecting	and	server	requests
The coupon collector’s problem in probability theory:
• You buy boxes of cereal.
• There are 𝑘	different types of coupons
• For each box you buy, you "collect"

a coupon of type 𝑖.
1. How many coupons do you expect

after buying 𝑛 boxes of cereal?

3

requests
𝑘 servers

Servers

request to
server 𝑖

* 52% of Amazon profits
** more profitable than Amazon’s
 North America commerce operations
source

What is the expected number of 
servers utilized after 𝑛 requests?

http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/
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Computer	cluster	utilization
Consider a computer cluster with 𝑘 servers. We send 𝑛 requests.
• Requests independently go to server 𝑖 with probability 𝑝!
• Let 𝑋 = #	servers that receive ≥ 1 request.

What is 𝐸 𝑋 ?

4

𝐸 "
!"#

$

𝑋! ="
!"#

$

𝐸 𝑋!
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Computer	cluster	utilization
Consider a computer cluster with 𝑘 servers. We send 𝑛 requests.
• Requests independently go to server 𝑖 with probability 𝑝!
• Let 𝑋 = #	servers that receive ≥ 1 request.

What is 𝐸 𝑋 ?

5

1. Define additional
random variables.

2. Solve.

Let: 𝐴% = event that server 𝑖
  receives ≥ 1 request
 𝑋% = indicator for 𝐴% 𝐸 𝑋 = 𝐸 )

%&'

(

𝑋%  =)
%&'

(

𝐸 𝑋% =)
%&'

(

1 − 1 − 𝑝% )

𝐸 𝑋% = 𝑃 𝐴% 	= 1 − 1 − 𝑝% )

=)
%&'

(

1 −)
%&'

(

1 − 𝑝% )
𝑃 𝐴% 			= 1 − 𝑃 no requests to 𝑖
  = 1 − 1 − 𝑝% ) = 𝑘 −)

%&'

(

1 − 𝑝% )

𝐸 "
!"#

$

𝑋! ="
!"#

$

𝐸 𝑋!

Note: 𝐴! are dependent!
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Coupon	collecting	problems:	Hash	tables
The coupon collector’s problem in probability theory:
• You buy boxes of cereal.
• There are 𝑘	different types of coupons
• For each box you buy, you "collect"

a coupon of type 𝑖.
1. How many coupons do you expect

after buying 𝑛 boxes of cereal?

2. How many boxes do you expect
to buy until you have one of
each coupon?

6

requests
𝑘 servers

Servers

request to
server 𝑖

strings
𝑘 buckets

Hash Tables

hashed to
bucket 𝑖

What is the expected number of 
utilized servers after 𝑛 requests?

What is the expected number of 
strings to hash until each bucket 
has ≥ 1 string?
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Hash	Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = #	strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

7

1. Define additional
random variables.

2. Solve.

How should we define 𝑌! such that                    ?

𝐸 "
!"#

$

𝑋! ="
!"#

$

𝐸 𝑋!

𝑌 =-
!

𝑌!
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Hash	Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = #	strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

8

1. Define additional
random variables.

2. Solve.

𝐸 "
!"#

$

𝑋! ="
!"#

$

𝐸 𝑋!

Let: 𝑌% = # of trials needed to get success after 𝑖-th success
• Success: hash string to previously empty bucket
• If 𝑖 non-empty buckets: 𝑃 success = (*%

(
 

𝑃 𝑌% = 𝑛 =
𝑖
𝑘

)*' 𝑘 − 𝑖
𝑘

Equivalently, 𝑌%~Geo 𝑝 = (*%
(

𝐸 𝑌% =
1
𝑝 =

𝑘
𝑘 − 𝑖
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Hash	Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = #	strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

9

1. Define additional
random variables.

2. Solve.

𝐸 "
!"#

$

𝑋! ="
!"#

$

𝐸 𝑋!

Let: 𝑌% = # of trials to needed get success after 𝑖-th success

𝑌%~Geo 𝑝 =
𝑘 − 𝑖
𝑘 , 	𝐸 𝑌% =

1
𝑝 =

𝑘
𝑘 − 𝑖

𝑌 = 𝑌+ + 𝑌' +⋯+ 𝑌(*'
𝐸 𝑌 = 𝐸 𝑌+ + 𝐸 𝑌( +⋯+ 𝐸 𝑌(*'

=
𝑘
𝑘
+

𝑘
𝑘 − 1

+
𝑘

𝑘 − 2
+⋯+

𝑘
1
= 𝑘

1
𝑘
+

1
𝑘 − 1

+⋯+ 1 = 𝑂 𝑘	log	𝑘



Covariance
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Statistics	of	sums	of	RVs

For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

Var 𝑋 + 𝑌 =	 ?

11

But first, a new statistic!
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Spot	the	difference
Compare/contrast the following two distributions:

12

Both distributions have the same 𝐸 𝑋 , 𝐸 𝑌 , Var 𝑋 , and Var 𝑌  

Difference: how the two variables vary with each other.

Assume all points are 
equally likely.

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 =
1
𝑁
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Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
   	 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

13

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌  = 𝐸 𝑋 − 𝜇, 𝑌 − 𝜇-
  = 𝐸 𝑋𝑌 − 𝜇-𝑋 − 𝜇,𝑌 + 𝜇,𝜇-  
  = 𝐸 𝑋𝑌 − 𝐸 𝜇-𝑋 − 𝐸 𝜇,𝑌 + 𝐸 𝜇,𝜇-  
  = 𝐸 𝑋𝑌 − 𝜇,𝜇- − 𝜇,𝜇- + 𝜇,𝜇-
  = 𝐸 𝑋𝑌 − 𝜇,𝜇- = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Proof of second part (rewriting 𝐸 𝑋 , 𝐸 𝑌 as 𝜇", 𝜇# to emphasize that they’re each constants):

(linearity of expectation)

(𝜇!, 𝜇"	are constants)
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Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
   	 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Covariance measures how one random variable varies with a second.
• Outside temperature and utility bills have a negative covariance.
• Handedness and musical ability have near zero covariance.
• Product demand and price have a positive covariance.

14
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Feel	the	covariance
Is the covariance positive, negative, or zero?

15

1. 3. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

2. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
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Feel	the	covariance
Is the covariance positive, negative, or zero?

16

1. 3. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

2. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

positive negative zero

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
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Cov 𝑊,𝐻 	= 𝐸 𝑊𝐻 − 𝐸 𝑊 𝐸 𝐻  
     = 3355.83 − 62.75 52.75
     = 45.77

Covarying	humans

What is the covariance of weight 𝑊 and 
height 𝐻?

17

Weight (kg) Height (in) W · H

64 57 3648

71 59 4189

53 49 2597

67 62 4154

55 51 2805

58 50 2900

77 55 4235

57 48 2736

56 42 2352

51 42 2142

76 61 4636

68 57 3876

(positive)

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

𝐸 𝑊
= 62.75

𝐸 𝐻
= 52.75

𝐸 𝑊𝐻
= 3355.83

40

50

60

70

45 55 65 75 85

He
ig

ht
 !

(in
ch

es
)

Weight " (kilograms)

Covariance > 0: one variable ↑,	other variable ↑
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Properties	of	Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
   	 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Properties:
1. Cov 𝑋, 𝑌 = Cov 𝑌, 𝑋
2. Var 𝑋 = 𝐸 𝑋0 − 𝐸 𝑋 0 = 𝐸 𝑋𝑋 − 𝐸 𝑋 𝐸 𝑋 	=	Cov 𝑋, 𝑋
3. Covariance of sums = sum of all pairwise covariances

 Cov 𝑋' + 𝑋1, 𝑌' + 𝑌1 = Cov 𝑋', 𝑌' + Cov 𝑋1, 𝑌' + Cov 𝑋', 𝑌1 + Cov 𝑋1, 𝑌1
4. Covariance under linear transformation: Cov 𝑎𝑋 + 𝑏, 𝑌 = 𝑎Cov 𝑋, 𝑌

18

(proof left to you)
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Zero	covariance	does	not	imply	independence
Let 𝑋 take on values −1,0,1  
with equal probability 1/3.

Define 𝑌 = 81	 if	𝑋 = 0
0	 otherwise

19

What is the joint PMF of 𝑋 and 𝑌?
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Zero	covariance	does	not	imply	independence
Let 𝑋 take on values −1,0,1  
with equal probability 1/3.

Define 𝑌 = 81	 if	𝑋 = 0
0	 otherwise

20

-1 0 1

0 1/3 0 1/3 2/3

1 0 1/3 0 1/3

1/3 1/3 1/3

𝑋

𝑌

Marginal PMF
of 𝑋, 𝑝% 𝑥

Marginal 
PMF of 
𝑌,	𝑝& 𝑦

1.  𝐸 𝑋 = 𝐸 𝑌 =

3.  Cov 𝑋, 𝑌 =

4. Are 𝑋 and 𝑌 independent?

2.  𝐸 𝑋𝑌 =



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Zero	covariance	does	not	imply	independence
Let 𝑋 take on values −1,0,1  
with equal probability 1/3.

Define 𝑌 = 81	 if	𝑋 = 0
0	 otherwise

21

-1 0 1

0 1/3 0 1/3 2/3

1 0 1/3 0 1/3

1/3 1/3 1/3

𝑋

𝑌

Marginal PMF
of 𝑋, 𝑝% 𝑥

Marginal 
PMF of 
𝑌,	𝑝& 𝑦

1.  𝐸 𝑋 = 𝐸 𝑌 =

3.  Cov 𝑋, 𝑌 =

4. Are 𝑋 and 𝑌 independent?

−1
1
3 + 0

1
3 + 1

1
3
= 0 0

2
3 + 1

1
3
= 1/3

2.  𝐸 𝑋𝑌 = −1 ⋅ 0
1
3 + 0 ⋅ 1

1
3 + 1 ⋅ 0

1
3

= 0

= 0 − 0 1/3 = 0

❌
𝑃 𝑌 = 0|𝑋 = 1 = 1

𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

≠ 	 𝑃 𝑌 = 0 = 2/3

⚠
does not imply 
independence!



Variance	of	
sums	of	RVs

22
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Statistics	of	sums	of	RVs
For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

23
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Variance	of	general	sum	of	RVs
For any random variables 𝑋 and 𝑌,

Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

Proof:

Var 𝑋 + 𝑌 = Cov 𝑋 + 𝑌, 𝑋 + 𝑌

 = Cov 𝑋, 𝑋 + Cov 𝑋, 𝑌 + Cov 𝑌, 𝑋 + Cov 𝑌, 𝑌

 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌  + Var 𝑌

More generally: 

Var )
%&'

)

𝑋% =)
%&'

)

Var 𝑋% + 2)
%&'

)

)
6&78'

)

Cov 𝑋%, 𝑋6

24

covariance of
all pairs

Var 𝑋 = Cov 𝑋, 𝑋

Symmetry of covariance + 
 Cov 𝑋, 𝑋 = Var 𝑋

(proof in extra slides)
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Statistics	of	sums	of	RVs
For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 	+	Var 𝑌

For independent 𝑋 and 𝑌,
𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌

Var 𝑋 + 𝑌 = Var 𝑋 +	Var 𝑌

25

(Lemma: proof in extra slides)
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Variance	of	sum	of	independent	RVs
For independent 𝑋 and 𝑌,

Var 𝑋 + 𝑌 = Var 𝑋 +	Var 𝑌

Proof:
1. Cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
 = 𝐸 𝑋 𝐸 𝑌 − 𝐸 𝑋 𝐸 𝑌  
 = 0 

2. Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 	+	Var 𝑌
 = Var 𝑋 +	Var 𝑌

26

𝑋 and 𝑌 are independent

def. of covariance
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Proving	Variance	of	the	Binomial

27

𝑋~Bin(𝑛, 𝑝) Var 𝑋 = 𝑛𝑝 1 − 𝑝  

Var 𝑋 = Var )
%&'

)

𝑋%𝑋 =-
!78

9

𝑋!

Let 𝑋% = 𝑖th trial is heads
𝑋%~Ber 𝑝

Var 𝑋% = 𝑝 1 − 𝑝

=)
%&'

)

Var 𝑋%

Let

𝑋$ are independent, 
therefore variance of sum 
= sum of variance

𝑋% are independent
(by definition)

=)
%&'

)

𝑝 1 − 𝑝

= 𝑛𝑝 1 − 𝑝

Variance of Bernoulli



Correlation

28
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Covarying	humans

29

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

40

50

60

70

45 55 65 75 85

He
ig

ht
 !

(in
ch

es
)

Weight " (kilograms)

Cov 2.20𝑊, 2.54𝐻 	
 = 𝐸 2.20𝑊 ⋅ 2.54𝐻 	−	𝐸 2.20𝑊 𝐸 2.54𝐻  
 = 18752.38 − 138.05 133.99
 = 255.06

What about weight (lb) and 
height (cm)?

Cov 𝑊,𝐻 	= 𝐸 𝑊𝐻 − 𝐸 𝑊 𝐸 𝐻  
    = 3355.83 − 62.75 52.75
    = 45.77

What is the covariance of 
weight 𝑊 and height 𝐻?

(positive)

100

120

140

160

180

100 120 140 160 180

He
ig

ht
 !

(c
m

)
Weight " (lb)

(positive)

⚠
Covariance depends
on units!

Sign of covariance (+/–) more 
meaningful than magnitude
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Correlation
The correlation of two variables 𝑋 and 𝑌 is:

𝜌 𝑋, 𝑌 =
Cov 𝑋, 𝑌
𝜎! 	𝜎" 	

• Note: −1 ≤ 𝜌 𝑋, 𝑌 ≤ 1
• Correlation measures the linear relationship between 𝑋 and 𝑌:

30

𝜌 𝑋, 𝑌 = 1 ⟹ 𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 = 𝜎:/𝜎;
𝜌 𝑋, 𝑌 = −1 ⟹ 𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 = −𝜎:/𝜎;
𝜌 𝑋, 𝑌 = 0 ⟹ uncorrelated (absence of linear relationship)

𝜎"% = Var 𝑋 ,
𝜎#% = Var 𝑌
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Correlation	reps
What is the correlation coefficient 𝜌 𝑋, 𝑌 ?

31

1. 2. 

3. 4. 

A.  𝜌 𝑋, 𝑌 = 1 
B.  𝜌 𝑋, 𝑌 = −1 
C.  𝜌 𝑋, 𝑌 = 0
D.  Other
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Correlation	reps
What is the correlation coefficient 𝜌 𝑋, 𝑌 ?

32

A.  𝜌 𝑋, 𝑌 = 1 
B.  𝜌 𝑋, 𝑌 = −1 
C.  𝜌 𝑋, 𝑌 = 0
D.  Other

1. 2. 

3. 4. 

𝑌 = −𝑎𝑋 + 𝑏
𝑎 > 0

B. 𝜌 𝑋, 𝑌 = −1

“uncorrelated”
C. 𝜌 𝑋, 𝑌 = 0

𝑌 = 𝑎𝑋 + 𝑏
𝑎 > 0

A. 𝜌 𝑋, 𝑌 = 1

𝑌 = 𝑋1
C. 𝜌 𝑋, 𝑌 = 0

𝑋 and 𝑌 can be nonlinearly related even if 𝜌 𝑋, 𝑌 = 0.
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Throwback	to	CS103:	Conditional	statements
Statement 𝑃 → 𝑄:  Independence à No correlation

Contrapositive ¬𝑄 → ¬𝑃: Correlation à Dependence

Inverse ¬𝑃 → ¬𝑄:  Dependence à Correlation

Converse 𝑄 → 𝑃:   No correlation à Independence

“Correlation does not imply causation”
33

✅ (logically
 equivalent)

❌ (not always)
𝑌 = 𝑋'	
𝜌 𝑋, 𝑌 = 0 

❌ (not always)

✅ 



Spurious	
Correlation

34
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Spurious	Correlations

𝜌 𝑋, 𝑌  is used a lot to statistically quantify the relationship b/t X and Y.

35

Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations
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Spurious	Correlations

𝜌 𝑋, 𝑌  is used a lot to statistically quantify the relationship b/t X and Y.
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Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations
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http://www.bbc.com/news/magazine-27537142

Divorce	vs.	Margarine

http://www.bbc.com/news/magazine-27537142


Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Arcade	revenue	vs.	CS	PhDs

38

Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations


Extras
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Expectation	of	product	of	independent	RVs

If 𝑋 and 𝑌 are 
independent, then

40

𝐸 𝑔 𝑋 ℎ 𝑌 (for continuous proof, replace 
summations with integrals)

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌
𝐸 𝑔 𝑋 ℎ 𝑌 = 𝐸 𝑔 𝑋 𝐸 ℎ 𝑌

Proof:

𝑋 and 𝑌 are independent=)
;

)
<

𝑔 𝑥 ℎ 𝑦 𝑝, 𝑥 𝑝- 𝑦

=)
;

)
<

𝑔 𝑥 ℎ 𝑦 𝑝,,- 𝑥, 𝑦

=)
;

ℎ 𝑦 𝑝- 𝑦 )
<

𝑔 𝑥 𝑝, 𝑥 Terms dependent on 𝑦
are constant in integral of 𝑥

= )
<

𝑔 𝑥 𝑝, 𝑥 )
;

ℎ 𝑦 𝑝- 𝑦 Summations separate

= 𝐸 𝑔 𝑋 𝐸 ℎ 𝑌
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Variance	of	Sums	of	Variables

Var )
%&'

)

𝑋% =)
%&'

)

Var 𝑋% + 2)
%&'

)

)
6&78'

)

Cov 𝑋%, 𝑋6

41

Proof: covariance of 

all pairsVar 𝑋 	

= Cov 𝑋,𝑋

Symmetry of covariance 
 Cov 𝑋,𝑋 = Var 𝑋

Var >
!&'

(

𝑋! =>
!&'

(

>
)&'

(

Cov 𝑋!, 𝑋)

=>
!&'

(

Var 𝑋! +	>
!&'

(

>
)&',)+!

(

Cov 𝑋!, 𝑋)

=>
!&'

(

Var 𝑋! + 2	>
!&'

(

>
)&$,'

(

Cov 𝑋!, 𝑋)

=	Cov >
!&'

(

𝑋! ,>
!&'

(

𝑋!

Adjust summation bounds


