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Coupon
Collecting




Coupon collecting and server requests

The coupon collector’s problem in probability theory: — Servers

You buy boxes of cereal. requests

There are k different types of coupons ke servers

For each box you buy, you "collect" request to

a coupon of type i. Servert

How many coupons do you expect What is the expected number of

after buying n boxes of cereal? servers utilized after n requests?
s .

\-\
a m azo n *  52% of Amazon profits
. ™ ** more profitable than Amazon’s
Web SeI'VICeS North America commerce operations
source
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http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

Computer cluster utilization

Consider a computer cluster with k servers. We send n reques&s.
* Requests independently go to server i with probability p; 2 pi= |
* Let X = # servers that receive = 1 request.

What is E[X]?

ey
&

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 4




Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
* Requests independently go to server i with probability p;

* Let X = # servers that receive = 1 request.
What is E[X]?

1. Define additional 2. Solve.
random variables.
Let: A; = event that server i ElX;]=PA)=1-(1Q-p)"

receives = 1 request
X; = mdmatqrforA

k
- E ZXL
B 1 YE Ay 1’\1\&; -
X { 0 & AL (ilds kel ) =1
P(4;) =1- P(no requests to i) i %Aﬁhw_ 05‘7
i=1 i=1

NOte: Al are dependent' Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford UIllVEI'Slty 5
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Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons k buckets

hashed to

For each box you buy, you "collect”

a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?
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Hash Tables g

Consider a hash table with k buckets.
» Strings are equally likely to get hashed into any bucket (independently).

* Let Y = # strings to hash until each bucket = 1 string.
What is E[Y]?

1. Define additional
random variables.  How should we define Y; such that Y = z Y;?
i
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[/\_ E Xi = EXl

Hash Tables Lt 2 2 X,]
AssHY” W’w\
) ) Lot _
Consider a hash table with k buckets. Pt

» Strings are equally likely to get hashed into any bucket (independently).

* Let Y = # strings to hash until each bucket = 1 string. .
. YD-: H hada o bed el ‘QHrS'(' \oudw-\-( a gA’\Alﬁ
What is E[Y]? Ny =8 hegher wekok wdl Ceensl b qkca sheivg
Yo = M wslat needsd uibl et veked acl*r o Stuvg

1. Define additional  Let: Y; = # of trials needed to get success after i-th success

random variables. < Success: hash string to previously empty bucket

. MU meen
* If i non-empty buckets: P(success) = k=i 4 eag b breluks:

k
== () (5
1 k

Equivalently, Y;~Geo (p = =)  E[Y] = =i
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Hash Tables g

Consider a hash table with k buckets.
» Strings are equally likely to get hashed into any bucket (independently).
* Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

A - \
2. Solve. Y=Yy+Y +-+Y,_4 MZ:W: a4 S\;,@W =
E[Y] = E[Yo] + E[Yi] + - + E[Yy—4]
/\M
. < s +k—k[ + + - +1] log
Tk Tk—1 k-2 1 ko k-1 = O0(k logk)
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Covariance




Statistics of sums of RVs

For any random variables X and Y,

E|IX+Y] =E|X]+ E|Y]

Var(X +Y)= ?

But first, a new statistic!
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Spot the difference

Compare/contrast the following two distributions: Assume all points are

equally likely. .
\ . . —_— —_— o —
\e/ D\%\lh y . . . y . e ° o P(X x’Y y) N
(ﬂ\wlk‘c L] ° L ] ° ...
YN 4 TS SO 4 . oneR s otz gl
\(\ ° ':".. o8 o, %0, °e8 .\.". °® F&’ J{/’\‘{'
%«ﬁ\ X ee% sus 2. IS WPI/“L‘ /
‘A)) M o o % e ?...%~'.’..Oo. . . 0? ‘, . '
R I - T S oo o e 8 0.0 X hemease s
« ,J\\\ V,J)"Lg' . '.I.’g’\'.?.",‘-.,' 0“."‘.".5 . .&?. (g .
1Y we 2 | Tas oA T 2 Y. Q ee N ented 2f
oS " {}i:\ Con? . '."%g‘ il well.
P L
O .:: ®e ° u. x O ....‘. ° x
0 2 4 6 0 2 4 6 L,
wmmuln £CR

these stmhshics "”'('k‘;:’,b{m Y aw CMLJ-
/——\_/\————-”—/\
Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.
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Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E|(X —E[XD( —E[Y])]
= E[XY]| — E|X]E|Y]

Proof of second part (rewriting E[X], E[Y] as uy, 1y to emphasize that they’re each constants):
Cov(X,Y) = E[(X — E[XD( — E[YD] = E[(X — ux)(Y — py)]
= E[XY — uyX — uxY + pypiy]
= E[XY] — E[uyX] — EluxY] + Epxpy] (linearity of expectation)
= E[XY] — uxpy — uxtty + pxpy (Hx, y are constants)
= E[XY] — puxpy = E[XY] — E[X]E[Y]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 13



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E|(X —E[XD( —E[Y])]
= E|XY] - E[X]E|Y]

Covariance measures how one random variable varies with a second.
Outside temperature and utility bills have a negative covariance.

Handedness and musical ability have near covariance.
Product demand and price have a positive covariance.
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. Cov(X,¥) = E[(X — E[X])(Y — E[Y])]
Feel the covariance _ E[XY] - E[XIE[Y]

Is the covariance positive, negative, or zero?

E[X]| ... 2. o | EIX]
. \-...' ey
~¢ o . e
. ,‘. -
. >\ ‘ -'-
Il Il [
S~ -
AW \" E[Y] - 1!. >
\ LN
. - )
X=x X=x
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford Uni. --J



Feel the covariance

Cov(X,Y) = E[(X — E[XD(Y — E[YD]

= E[XY] — E[X]E[Y]

Is the covariance positive, negative, or zero?

A X nacyeated (S
drea Yy . ?D';'v\"l\L W YRANAMLA

E[X 2 E[X
[ ] ' ,‘ [a]g )Q'/\ﬂ
;"- 32...‘,‘ (PPO{‘L‘NV\ S
=~ o ) B
I ¥R I ;- "
>~ R E[y] > 1
S SR RN
. e .
X=x X=x
positive negative
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Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[YD]
= E[XY] — E[X]E[Y]

Weight (kg) | Height (in) W-H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

E[wW]  E[H]  E[WH)]

= 62.75 =152.75

What is the covariance of weight W and
height H?
Cov(W,H) = E[WH] — E[W]E[H]
= 3355.83 — (62.75)(52.75)
(positive) = 4577

45 55 65 75 85
Weight W (kilograms)

Covariance > O: one variable T, other variable T

— 3 35 EQ&B Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 17



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y,X)
Var(X) = E[X?] — (E[X])? = E[XX] — E[X]E[X] = Cov(X, X)
Covariance of sums = sum of all pairwise covariances
Cov(X; + X,,Y; +Y,) = Cov(Xy,Y;) + Cov(X,,Y;) + Cov(Xy,Y,) + Cov(X,,Y,)

Covariance under linear transformation; g:‘ov(aX + b,Y) = aCov(X,Y)
Veeall That VM[QX+b) N 47'VM(>< ' /\ < wmarchent

H g scem W . .
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Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

J ‘In-l'wwu)
(1 X =0 At
DefineY = . NS
0 otherwise v 3¢ oW AP

What is the joint PMF of X and Y?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
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Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 Eg[x] = E[Y] =
with equal probability 1/3.
Definey =4+ TX=0
0 otherwise o E[XY] =
1 0 1
. 3. Cov(X,Y) =
9 0] 1/3 O 1/3 |2/3 Marginal
PMF of
0 1/3 0 [1/3 v, ()
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF ) <)
of X, px(x)

é?
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Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 Eg[x] =

ith equal probability 1/3.
v et ; A I
Define Y = .
0 otherwise 2. EIXY] = (-1- 0)( )+(0 1)(1)+(1-0)®

3
=0

-1 0 1
0] 1/3 O 1/3 |2/3 Marginal

3. Cov(X,Y) = E[XY] — E[X]E[Y]

— 0O — _ does not imply
O 1/3 0 |1/3 i?ﬂpi?;) =0 0(1/3) =0 4 independence!
1/3 1/3 1/3 4. Are X and Y independent? 3
Marginal PMF PY=0X=1)=1

of X, px (x) + P(Y=0)=2/3
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Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
EIX+Y]|=E|X]|+E|[Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)
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Variance of general sum of RVs

For any random variables X and Y,

Var(X +Y) =Var(X) + 2-Cov(X,Y) + Var(Y)

Proof:

Var(X +Y)=Cov(X+Y,X+Y) Var(X) = Cov(X, X)
= Cov(X, X) + Cov(X, Y)+ Cov(Y, X)+ Cov(Y, Y) covaranee
= Var(X) + 2 - Cov(X,Y) + Var(Y) Symmetry of covariance +

Cov(X,X) = Var(X)
More generally:

Var(ianXi> ZVar(X)+Zz z Cov (X;, X;)

=1 j=i+1
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Statistics of sums of RVs

For independent X and Y,
E|XY] = E|X]|E|[Y]

Var(X +Y) = Var(X)+ Var(Y)
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Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:
1. Cov(X,Y) = E[XY] — E[X]E|Y]
= E|X]|E|Y] — E[X]E|Y]
&

=0 o gt

W] .
mmﬁf y o™

2. Var(X+Y) =Var(X) + 2 -/Cm + Var(Y)
= Var(X)+ Var(Y)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def. of covariance

X and Y are independent
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Proving Variance of the Binomial

X~Bin(n,p) Vvar(X) =np(1 —p)

n
Let X = ZXL
i=1

Let X; = ith trial is heads
X;~Ber(p)

Var(X;) = p(1 —p)

X; are independent
(by definition)

Var(X) = Var(Z Xl->

=1
n

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

)
w1
Xj are independent,
therefore variance of sum

= sum of variance

Variance of Bernoulli
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Correlation




Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[YD]
= E[XY] — E[X]E[Y]

What is the covariance of
weight W and height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)

= 45.77 (positive)

What about weight (Ib) and
height (cm)?

Cov(2.20W, 2.54H)

180 -

§ 160

T 140
D
2 120

= E[2.20W - 2.54H] — E[2.20W]E[2.54H] ~.400

= 18752.38 — (138.05)(133.99) P .ok
=/255.06 (positive) 4T 11 T N

I Covariancedepengs’ZD . 21'64'

~ on units!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

45 5|5 6I5 7|5 8I5
Weight W (kilograms)

i . .

i o o ¢ .

i o? **

. .
100 12|o 1210 1éo 1éo
Weight W (Ib)

Sign of covariance (+/-) more
meaningful than magnitude
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Correlation

The correlation of two variables X and Y is:

Cov(X,Y) 2 var
P (X’ Y) = UXZ;\\//ar(()é)),
Ox Oy !

Note: —1 < p(X,Y) <1
Correlation measures the linear relationship between X and Y:

p(X,Y)=1 = Y = aX + b, where a = gy /oy
p(X,Y)=—-1 =Y =aX+ b, where a = —ay /oy
p(X,Y)=0 = uncorrelated (absence of linear relationship)
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Correlation reps

What is the correlation coefficient p(X,Y)?

1.

JE

~N

.,

2.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

OO W >

p(X,Y) =1
CpXY)=-1
. pX,Y)=0
. Other
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Correlation reps

What is the correlation coefficient p(X,Y)?
1.

B.p(X,Y) =-1
Y=—aX+Db
a>0
C.p(X,Y)=0

“uncorrelated”

2.

A pX,Y)=1
5. pX,Y)=-1
C. p(X,Y)=0
D. Other
A pX,Y)=1
Y=aX+0b
a>0
C.p(X,Y)=0
Y = X?

X and Y can be nonlinearly related even if p(X,Y) = 0.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
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Throwback to CS103: Conditional statements

Statement P - Q: Independence > No correlation
Contrapositive =Q — —P: Correlation > Dependence M (logically
equivalent)
Inverse =P — —0: Dependence = Correlation X (ot atways)
Y = X?
p(X,Y) =0
Converse Q — P: No correlation = Independence X .t aways)

“Correlation does not imply causation”
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Spurious
Correlation




Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Spurious correlations
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Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs 800 deaths
; 4
= w
£ 3
< 31.5lbs 600 deaths B
S Yy
v
8 3
@ =
o  30lbs 400 deaths gg
w
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings -~ Cheese consumed Spurious correlations
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Divorce vs. Margarine

Divorce rate Per capita

in Maine per L = consumption of

1,000 people Correlation: 99% margarine (Ibs)
5.25 10

5.00
\ 8
475
4.50 S j 8
AN

4.25 e~
4.00
2 |
3.75 —
3.50 : 0
2000 01 D2 USSR R 06 9 0708 Sal
Source: US Census, USDA, tylervigen.com SPL

http://www.bbc.com/news/magazine-27537142
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Arcade revenue vs. CS PhDs

Total revenue generated by arcades

correlates with
Correlation: Computer science doctorates awarded in the US
0.947091

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$2 billion 2000 degrees
0
¢ . c
$1.75 billion 'g
3 1500 degrees &
] -
> é
& . . e
o S1.5billion Z
3 G
< 1000 degrees ,8,
e
$1.25 billion g
e
w
$1 billion 500 degrees
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

- Computer science doctorates  -#- Arcade revenue

Spurious correlations
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Extras




Expectation of product of independent RVs

_IfX and Y are E[XY] = E[X]E[Y]
ndependent, then Elg(X)R(] = ELgCOIE (V)]
oot ELGOORMO =D, ) 9(pay ) o oo o e
= z Z g)h()px(x)py () X and Y are independent
y x
— Terms dependent on
Z (h(Y)pY (y) Z g(x)pX (x)) are constant in integral ofic]

— (Z g(X)Px(X)> (z h(y)py(y)> Summations separate
X y

=L|3Ee[n,gh(}£e)h] PEh[ahﬁgxﬁ)a]wd Jerry Cain, CS109, Spring 2024 Stanford University 40



Variance of Sums of Variables

Var zn:xi ZVar(X)+Zz Z Cov (X;, X;)
i=1

=1 j=i+1
of
(&X\ X} ,('\ (\C'e
Proof n \12 ol n n NG g
Var<2Xl> =Cov<zXl,ZXl> = ECOV(XL,X)
i=1 i=1  i=1 i=1j=1
z Var(X;) + Cov (X3, X;)
i=1j= 1]¢L
n
= ZVar(Xi) +2 z z Cov (X;, X;)
i=1 i=1 j=i+1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Symmetry of covariance
Cov(X,X) =

Adjust summation bounds
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