13: Statistics on Multiple

 Random VariablesJerry Cain
April $29^{\text {th }}, 2024$

Lecture Discussion on Ed

Coupon Collecting

Coupon collecting and server requests

The coupon collector's problem in probability theory: Servers

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

What is the expected number of servers utilized after n requests?
requests
k servers
request to
server i

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability $p_{i} \sum_{i=1}^{k} p_{i}=1$
- Let $X=$ \# servers that receive ≥ 1 request.

What is $E[X]$?

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_{i}
- Let $X=$ \# servers that receive ≥ 1 request.

What is $E[X]$?

1. Define additional 2. Solve. random variables.
Let: $A_{i}=$ event that server i receives ≥ 1 request

$P\left(A_{i}\right)=1-P($ no requests to i)

$$
=1-\left(1-p_{i}\right)^{n}
$$

Note: A_{i} are dependent!

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

Servers Hash Tables requests strings
k servers k buckets request to hashed to server i bucket i a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

What is the expected number of utilized servers after n requests?
2. How many boxes do you expect to buy until you have one of each coupon?

Hash Tables

$$
{ }_{E}\left[\sum_{i=1}^{n} x_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y=\#$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional
random variables. How should we define Y_{i} such that $Y=\sum_{i} Y_{i}$?
2. Solve.

Hash Tables

Consider a hash table with k buckets.

$$
\begin{aligned}
& \text { shash } \quad E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right] \\
& \text { assume itarat so that } \\
& \text { function, }=\frac{1}{k}
\end{aligned}
$$

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y=\#$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.
2. Solve.
$Y_{p}=\#$ hashes needed until first buclect.
$Y_{1}=\psi$ hashes needed neint until se cond bucleat gets a string
Let: $Y_{i}=\#$ of trials needed to get success after i-th success

- Success: hash string to previously empty bucket
- If i non-empty buckets: P (success) $=\frac{k-i\}}{k}$ nu meato ic nup mbad budeats.

$$
P\left(Y_{i}=n\right)=\left(\frac{i}{k}\right)^{n-1}\left(\frac{k-i}{k}\right)
$$

Equivalently, $Y_{i} \sim \operatorname{Geo}\left(p=\frac{k-i}{k}\right) \quad E\left[Y_{i}\right]=\frac{1}{p}=\frac{k}{k-i}$

Hash Tables

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y=\#$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional Let: $Y_{i}=\#$ of trials to needed get success after i-th success random variables.

$$
Y_{i} \sim \operatorname{Geo}\left(p=\frac{k-i}{k}\right), \quad E\left[Y_{i}\right]=\frac{1}{p}=\frac{k}{k-i}
$$

2. Solve. $Y=Y_{0}+Y_{1}+\cdots+Y_{k-1}$

$$
\sum_{m=1}^{k} \frac{1}{m} \approx \int_{1}^{k} \frac{1}{m} d m=\ln x
$$

$$
E[Y]=E\left[Y_{0}\right]+E\left[Y_{k}\right]+\cdots+E\left[Y_{k-1}\right]
$$

$$
=\frac{k}{k}+\frac{k}{k-1}+\frac{k}{k-2}+\cdots+\frac{k}{1}=k\left[\frac{1}{k}+\frac{1}{k-1}+\cdots+1\right]=O(k \stackrel{\downarrow}{\log k})
$$

Covariance

Statistics of sums of RVs

For any random variables X and Y,

$$
E[X+Y]=E[X]+E[Y]
$$

$$
\operatorname{Var}(X+Y)=?
$$

But first, a new statistic!

Spot the difference

Compare/contrast the following two distributions:
Assume all points are equally likely.

Both distributions have the same $E[X], E[Y], \operatorname{Var}(X)$, and $\operatorname{Var}(Y)$
Difference: how the two variables vary with each other.

Covariance

The covariance of two variables X and Y is:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Proof of second part (rewriting $E[X], E[Y]$ as μ_{X}, μ_{Y} to emphasize that they're each constants):

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])]=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{Y} X-\mu_{X} Y+\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-E\left[\mu_{Y} X\right]-E\left[\mu_{X} Y\right]+E\left[\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-\mu_{X} \mu_{Y}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{Y} \\
& =E[X Y]-\mu_{X} \mu_{Y}=E[X Y]-E[X] E[Y]
\end{aligned}
$$

(linearity of expectation)
(μ_{X}, μ_{Y} are constants)

Covariance

The covariance of two variables X and Y is:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

Feel the covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Is the covariance positive, negative, or zero?

Feel the covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Is the covariance positive, negative, or zero?
as x increases, so
dres y : positive coranaince
1.

negative

zero

Covarying humans

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Weight (kg)	Height (in)	$\mathrm{W} \cdot \mathrm{H}$
64	57	3648
71	59	4189
53	49	2597
67	62	4154
55	51	2805
58	50	2900
77	55	4235
57	48	2736
56	42	2352
51	42	2142
76	61	4636
68	57	3876
$E[W]$	$E[H]$	$E[W H]$
$=62.75$	$=52.75$	$=3355.83$

Covariance > 0 : one variable \uparrow, other variable \uparrow
$=62.75=52.75=3355.83$

Properties of Covariance

The covariance of two variables X and Y is:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Properties:

1. $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
2. $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=E[X X]-E[X] E[X]=\operatorname{Cov}(X, X)$
3. Covariance of sums $=$ sum of all pairwise covariances
(proof left to you)
$\operatorname{Cov}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=\operatorname{Cov}\left(X_{1}, Y_{1}\right)+\operatorname{Cov}\left(X_{2}, Y_{1}\right)+\operatorname{Cov}\left(X_{1}, Y_{2}\right)+\operatorname{Cov}\left(X_{2}, Y_{2}\right)$
4. Covariance under linear transformation; $\operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1 / 3$.

What is the joint PMF of X and Y ?

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1 / 3$.
Define $Y=\left\{\begin{array}{rr}1 & \text { if } X=0 \\ 0 & \text { otherwise }\end{array}\right.$

Marginal PMF
of $X, p_{X}(x)$

1. $E[X]=$
$E[Y]=$
2. $E[X Y]=$
3. $\operatorname{Cov}(X, Y)=$
4. Are X and Y independent?

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1 / 3$.
Define $Y=\left\{\begin{array}{rr}1 & \text { if } X=0 \\ 0 & \text { otherwise }\end{array}\right.$

\therefore| X | | | | | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| | | | | | |
| | -1 | 0 | 1 | | |
| 0 | $1 / 3$ | 0 | $1 / 3$ | $2 / 3$ | Marginal
 PMF of
 1 |
| | 0 | $1 / 3$ | 0 | $1 / 3$ | $Y, p_{Y}(y)$ |
| | $1 / 3$ | $1 / 3$ | $1 / 3$ | | |

Marginal PMF
of $X, p_{X}(x)$

1. $E[X]=\quad E[Y]=$
$-1\left(\frac{1}{3}\right)+0\left(\frac{1}{3}\right)+1\left(\frac{1}{3}\right)=0 \quad 0\left(\frac{2}{3}\right)+1\left(\frac{1}{3}\right)=1 / 3$
2. $E[X Y]=(-1 \cdot 0)\left(\frac{1}{3}\right)+(0 \cdot 1)\left(\frac{1}{3}\right)+(1 \cdot 0)\left(\frac{1}{3}\right)$ $=0$
3. $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$

$$
=0-0(1 / 3)=0
$$

does not imply independence!
4. Are X and Y independent? \mathbf{X}

$$
\begin{aligned}
P(Y= & 0 \mid X=1)=1 \\
& \neq \quad P(Y=0)=2 / 3
\end{aligned}
$$

Variance of sums of RVs

Statistics of sums of RVs

For any random variables X and Y,

$$
\begin{gathered}
E[X+Y]=E[X]+E[Y] \\
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{gathered}
$$

Variance of general sum of RVs

For any random variables X and Y,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
$$

Proof:

$$
\begin{array}{rlr}
\operatorname{Var}(X+Y) & =\operatorname{Cov}(X+Y, X+Y) & \operatorname{Var}(X)=\operatorname{Cov}(X, X) \\
& =\operatorname{Cov}(X, X)+\underline{\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)}+\operatorname{Cov}(Y, Y) & \begin{array}{r}
\text { covariance of } \\
\text { all pairs }
\end{array} \\
& =\operatorname{Var}(X)+\underline{2} \cdot \operatorname{Cov}(X, Y)+\operatorname{san} \underline{\operatorname{Var}}(Y) & \begin{aligned}
\text { Symmetry of covariance }+ \\
\operatorname{Cov}(X, X)=\operatorname{Var}(X)
\end{aligned}
\end{array}
$$

More generally:

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Statistics of sums of RVs

For any random variables X and Y,

$$
\begin{gathered}
E[X+Y]=E[X]+E[Y] \\
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{gathered}
$$

For independent X and Y,

$$
E[X Y]=E[X] E[Y]
$$

$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Variance of sum of independent RVs

For independent X and Y,

$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof:

```
1. \(\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]\)
    \(=E[X] E[Y]-E[X] E[Y]\)
```

def. of covariance
X and Y are independent

```
\[
=0
\]
```

```
\[
\text { 2. } \operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\]
\[
=\operatorname{Var}(X)+\operatorname{Var}(Y)
\]
```


Proving Variance of the Binomial

$$
X \sim \operatorname{Bin}(n, p) \quad \operatorname{Var}(X)=n p(1-p)
$$

Let $\quad X=\sum_{i=1}^{n} X_{i}$
Let $X_{i}=i$ th trial is heads
$X_{i} \sim \operatorname{Ber}(p)$
$\operatorname{Var}\left(X_{i}\right)=p(1-p)$
X_{i} are independent (by definition)

$$
\begin{array}{rlrl}
\operatorname{Var}(X) & =\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) & \begin{array}{l}
X_{i} \text { are independent, } \\
\text { therefore variance of sum } \\
\text { =sum of variance }
\end{array} \\
& =\sum_{i=1}^{n} p(1-p) & & \text { Variance of Bernoulli } \\
& =n p(1-p) &
\end{array}
$$

Correlation

Covarying humans

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

What is the covariance of weight W and height H ?
$\operatorname{Cov}(W, H)=E[W H]-E[W] E[H]$

$$
=3355.83-(62.75)(52.75)
$$

$=45.77$ (positive)
What about weight (lb) and height (cm)?
$\operatorname{Cov}(2.20 \mathrm{~W}, 2.54 \mathrm{H})$

$$
\begin{aligned}
& =E[2.20 \mathrm{~W} \cdot 2.54 \mathrm{H}]-E[2.20 \mathrm{~W}] E[2.54 \mathrm{H}] \\
& =18752.38-(138.05)(133.99) \\
& =255.06 \text { (positive) } \\
& !\quad \begin{array}{l}
\text { Covariance depeng2,20 }
\end{array} \\
& \text { on units! }
\end{aligned}
$$

Sign of covariance (+/-) more meaningful than magnitude

Correlation

The correlation of two variables X and Y is:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- Note: $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the linear relationship between X and Y :

$$
\begin{array}{ll}
\rho(X, Y)=1 & \Rightarrow Y=a X+b, \text { where } a=\sigma_{Y} / \sigma_{X} \\
\rho(X, Y)=-1 & \Rightarrow Y=a X+b, \text { where } a=-\sigma_{Y} / \sigma_{X} \\
\rho(X, Y)=0 & \Rightarrow \text { uncorrelated (absence of linear relationship) }
\end{array}
$$

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?
A. $\rho(X, Y)=1$
B. $\rho(X, Y)=-1$
C. $\rho(X, Y)=0$
D. Other
1.

2.

3.

4.

Correlation reps

A. $\rho(X, Y)=1$
B. $\rho(X, Y)=-1$
C. $\rho(X, Y)=0$

What is the correlation coefficient $\rho(X, Y)$?
D. Other
1.

3.

B. $\rho(X, Y)=-1$
$Y=-a X+b$ $a>0$
C. $\rho(X, Y)=0$
"uncorrelated"
2.

A. $\rho(X, Y)=1$

$$
Y=a X+b
$$

$$
a>0
$$

C. $\rho(X, Y)=0$

$$
Y=X^{2}
$$

X and Y can be nonlinearly related even if $\rho(X, Y)=0$.

Throwback to CSio3: Conditional statements

Statement $P \rightarrow Q: \quad$ Independence \rightarrow No correlation ∇

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence
∇ (logically equivalent)

Inverse $\neg P \rightarrow \neg Q$: \quad Dependence \rightarrow Correlation

No correlation \rightarrow Independence
(not always)
$Y=X^{2}$
$\rho(X, Y)=0$

"Correlation does not imply causation"

Spurious Correlation

Spurious Correlations

$\rho(X, Y)$ is used a lot to statistically quantify the relationship $\mathrm{b} / \mathrm{t} \mathrm{X}$ and Y .

Correlation:
0.947091

Spurious Correlations

$\rho(X, Y)$ is used a lot to statistically quantify the relationship $\mathrm{b} / \mathrm{t} \mathrm{X}$ and Y .

Correlation:
Per capita cheese consumption
\equiv
0.947091 Number of people who died by becoming tangled in their bedsheets

Stanford University 36

Divorce vs. Margarine

http://www.bbc.com/news/magazine-27537142

Arcade revenue vs. CS PhDs

Total revenue generated by arcades \equiv
correlates with
Computer science doctorates awarded in the US

[^0]Extras

Expectation of product of independent RVs

If X and Y are independent, then

$$
\begin{aligned}
E[X Y] & =E[X] E[Y] \\
E[g(X) h(Y)] & =E[g(X)] E[h(Y)]
\end{aligned}
$$

Proof: $E[g(X) h(Y)]=\sum_{y} \sum_{x} g(x) h(y) p_{X, Y}(x, y)$
(for continuous proof, replace summations with integrals)
X and Y are independent

Terms dependent on y are constant in integral of x

Summations separate

Variance of Sums of Variables

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Proof:

$$
\begin{aligned}
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

[^0]: Data sources: U.S. Census Bureau and National Science Foundation

