## 13: Statistics on Multiple Random Variables

Jerry Cain April 29<sup>th</sup>, 2024

Lecture Discussion on Ed



# Coupon Collecting

#### Coupon collecting and server requests

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?

<u>Servers</u> requests k servers request to server i

What is the expected number of servers utilized after *n* requests?



\*\* more profitable than Amazon's North America commerce operations source

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

mazon

web services<sup>\*\*</sup>

#### Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server *i* with probability  $p_i = 1$
- Let X = # servers that receive  $\ge 1$  request.

What is E[X]?



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a computer cluster with *k* servers. We send *n* requests.

- Requests independently go to server i with probability  $p_i$
- Let X = # servers that receive  $\ge 1$  request.

What is E[X]?

1. Define additional random variables.

#### 2. Solve.

Let: 
$$A_i$$
 = event that server  $i$   
receives  $\geq 1$  request  
 $X_i$  = indicator for  $A_i$   
 $\times_i = \begin{cases} 1 & \text{if } A_i \\ 0 & \text{if } A_i \end{cases}$  for  $A_i$   
 $P(A_i) = 1 - P(\text{no requests to } i)$   
 $= 1 - (1 - p_i)^n$ 

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$

$$E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n)$$

$$= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n \text{ when } n = 0$$

Note:  $A_i$  are dependent!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

### Coupon collecting problems: Hash tables

#### The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

| <u>Servers</u> | <u>Hash Tables</u> |
|----------------|--------------------|
| requests       | strings            |
| k servers      | k buckets          |
| request to     | hashed to          |
| server i       | bucket <i>i</i>    |

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has  $\geq 1$  string?

#### Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket  $\ge 1$  string.

What is E[Y]?

1. Define additional random variables.

How should we define 
$$Y_i$$
 such that  $Y = \sum Y_i$ ?



i

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Hash Tables

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).

#### What is E[Y]?

1. Define additional random variables.

• Let Y = # strings to hash until each bucket  $\geq 1$  string. What is E[Y]? 1. Define additional Let:  $Y_i = \#$  of trials needed to get success after *i*-th success

Success: hash string to previously empty bucket

assume ideal hash function, so that

If *i* non-empty buckets:  $P(\text{success}) = \frac{k-i^2}{k}$  of empty buckets.

$$P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)$$

Equivalently, 
$$Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)$$
  $E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 8

 $E\left|\sum_{i=1}^{n} X_{i}\right| = \sum_{i=1}^{n} E[X_{i}]$ 

2. Solve.

#### Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket  $\geq 1$  string.

#### What is E[Y]?

1. Define additional Let:  $Y_i = #$  of trials to needed get success after *i*-th success random variables.



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

### Covariance

#### Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X+Y) = ?$$

But first, a new statistic!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Spot the difference



Difference: how the two variables vary with each other.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part (rewriting E[X], E[Y] as  $\mu_X$ ,  $\mu_Y$  to emphasize that they're each constants):

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[(X - \mu_X)(Y - \mu_Y)]$$
  

$$= E[XY - \mu_Y X - \mu_X Y + \mu_X \mu_Y]$$
  

$$= E[XY] - E[\mu_Y X] - E[\mu_X Y] + E[\mu_X \mu_Y]$$
 (linearity of expectation  

$$= E[XY] - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y$$
  

$$= E[XY] - \mu_X \mu_Y = E[XY] - E[X]E[Y]$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

#### Feel the covariance

 $Cov(X,Y) = \frac{E[(X - E[X])(Y - E[Y])]}{E[XY] - E[X]E[Y]}$ 

Is the covariance positive, negative, or zero?





Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Covarying humans

### Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

|              | I                                | 1                                   |                                                       |
|--------------|----------------------------------|-------------------------------------|-------------------------------------------------------|
| Weight (kg)  | Height (in)                      | W · H                               | What is the covariance of weight $W$ and              |
| 64           | 57                               | 3648                                | height H?                                             |
| 71           | 59                               | 4189                                |                                                       |
| 53           | 49                               | 2597                                | Cov(W,H) = E[WH] - E[W]E[H]                           |
| 67           | 62                               | 4154                                | = 3355.83 - (62.75)(52.75)                            |
| 55           | 51                               | 2805                                | (positive) = 45.77                                    |
| 58           | 50                               | 2900                                | σ <sup>70</sup> ]                                     |
| 77           | 55                               | 4235                                |                                                       |
| 57           | 48                               | 2736                                | li (ji li         |
| 56           | 42                               | 2352                                |                                                       |
| 51           | 42                               | 2142                                |                                                       |
| 76           | 61                               | 4636                                | 45 55 65 75 85                                        |
| 68           | 57                               | 3876                                | Weight W (kilograms)                                  |
| E[W] = 62.75 | <i>E</i> [ <i>H</i> ]<br>— 52 75 | <i>E</i> [ <i>WH</i> ]<br>– 3355.83 | Covariance > 0: one variable 1, other variable 1      |
| -02.75       | — JZ./J                          |                                     | Tech, wernan Sanami, and Jeny Gam, CS109, Spring 2024 |

#### **Properties of Covariance**

The **covariance** of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

**Properties:** 

- 1. Cov(X, Y) = Cov(Y, X)
- 2.  $Var(X) = E[X^2] (E[X])^2 = E[XX] E[X]E[X] = Cov(X,X)$
- **3.** Covariance of sums = sum of all pairwise covariances (proof left to you)  $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_2, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_2)$
- 4. Covariance under linear transformation: Cov(aX + b, Y) = aCov(X, Y)  $Vecall that Var(aX+b) = a^2 Var(X)! f$ this seems insistent

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Zero covariance does not imply independence

Let X take on values  $\{-1,0,1\}$ with equal probability 1/3. Define  $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$   $\begin{array}{c} Y \in \text{intentional} \\ X \in 0 & \text{iff} \\ X \in 0 & \text{iff} \\ Y \in 0 & \text{iff} \\ Y$ 

What is the joint PMF of *X* and *Y*?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Zero covariance does not imply independence



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Zero covariance does not imply independence

Let X take on values  $\{-1,0,1\}$ **1.** E[X] =E[Y] =with equal probability 1/3.  $-1\left(\frac{1}{3}\right) + 0\left(\frac{1}{3}\right) + 1\left(\frac{1}{3}\right) = 0 \qquad 0\left(\frac{2}{3}\right) + 1\left(\frac{1}{3}\right) = 1/3$ Define  $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$ 2.  $E[XY] = (-1 \cdot 0) \left(\frac{1}{2}\right) + (0 \cdot 1) \left(\frac{1}{2}\right) + (1 \cdot 0) \left(\frac{1}{2}\right)$ = 0X 
 -1
 0
 1

 1/3
 0
 1/3
 2/3

 0
 1/3
 0
 1/3
 3.  $\operatorname{Cov}(X, Y) = E[XY] - E[X]E[Y]$ Marginal 0 does not imply independence! = 0 - 0(1/3) = 0  $\triangle$ PMF of 1  $Y, p_{Y}(y)$ 4. Are X and Y independent? 1/3 1/3 1/3P(Y = 0 | X = 1) = 1Marginal PMF of X,  $p_x(x)$  $\neq P(Y = 0) = 2/3$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

# Variance of sums of RVs

#### Statistics of sums of RVs

For any random variables *X* and *Y*,

E[X + Y] = E[X] + E[Y]Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Variance of general sum of RVs

For any random variables *X* and *Y*,

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Proof:

$$Var(X + Y) = Cov(X + Y, X + Y)$$

$$= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)$$

$$= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

$$Var(X) = Cov(X, X)$$

$$Cov(X, X) = Var(X)$$

$$Var(X) = Cov(X, X)$$

$$Var(X) = Cov(X, X)$$

$$Cov(X, X) = Var(X)$$

$$Var(X) = Var(X)$$

More generally:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad (\text{proof in extra slides})$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$
  
Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

For independent X and Y, E[XY] = E[X]E[Y] (Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Variance of sum of independent RVs

For independent *X* and *Y*,

$$Var(X + Y) = Var(X) + Var(Y)$$

#### Proof:

1. Cov(X,Y) = E[XY] - E[X]E[Y]= E[X]E[Y] - E[X]E[Y] = 0 = 0  $= Var(X + Y) = Var(X) + 2 \cdot Cov(X,Y) + Var(Y)$  = Var(X) + Var(Y)

def. of covariance

X and Y are independent

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Proving Variance of the Binomial

 $X \sim Bin(n, p)$  Var(X) = np(1-p)

 $X = \sum_{i=1}^{n} X_i$ Let  $X_i = i$ th trial is heads  $X_i \sim \text{Ber}(p)$  $Var(X_i) = p(1-p)$ 

Let

 $X_i$  are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} Var(X_i)$$
$$= \sum_{i=1}^{n} p(1-p)$$

= np(1-p)

 $X_{i}$  are independent, therefore variance of sum = sum of variance

Variance of Bernoulli



yay!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

## Correlation



#### Covarying humans

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 29

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]

#### Correlation

The **correlation** of two variables *X* and *Y* is:

- Note:  $-1 \le \rho(X, Y) \le 1$
- Correlation measures the linear relationship between X and Y:

$$\begin{array}{ll} \rho(X,Y) = 1 & \implies Y = aX + b, \text{ where } a = \sigma_Y / \sigma_X \\ \rho(X,Y) = -1 & \implies Y = aX + b, \text{ where } a = -\sigma_Y / \sigma_X \\ \rho(X,Y) = 0 & \implies \text{uncorrelated (absence of linear relationship)} \end{array}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Correlation reps

#### What is the correlation coefficient $\rho(X, Y)$ ?







Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 31

A.  $\rho(X, Y) = 1$ B.  $\rho(X, Y) = -1$ C.  $\rho(X, Y) = 0$ 

D. Other



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Throwback to CS103: Conditional statements

Statement  $P \to Q$ :Independence  $\Rightarrow$  No correlation $\checkmark$ Contrapositive  $\neg Q \to \neg P$ :Correlation  $\Rightarrow$  Dependence $\checkmark$  (logically<br/>equivalent)Inverse  $\neg P \to \neg Q$ :Dependence  $\Rightarrow$  Correlation $\bigstar$  (not always)<br/> $Y = X^2$ <br/> $\rho(X, Y) = 0$ Converse  $Q \to P$ :No correlation  $\Rightarrow$  Independence $\bigstar$  (not always)<br/> $Y = X^2$ <br/> $\rho(X, Y) = 0$ 

#### "Correlation does not imply causation"

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

# Spurious Correlation

#### **Spurious Correlations**

 $\rho(X, Y)$  is used a lot to statistically quantify the relationship b/t X and Y.

### Correlation: 0.947091



#### **Spurious Correlations**

 $\rho(X, Y)$  is used a lot to statistically quantify the relationship b/t X and Y.



#### Divorce vs. Margarine



http://www.bbc.com/news/magazine-27537142

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

#### Arcade revenue vs. CS PhDs



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 38



### Extras

### Expectation of product of independent RVs

If X and Y are  
independent, then
$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$
Proof:
$$E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x,y)$$
(for continuous proof, replace  
summations with integrals)  

$$= \sum_{y} \sum_{x} g(x)h(y)p_{X}(x)p_{Y}(y)$$

$$X \text{ and } Y \text{ are independent}$$

$$= \sum_{y} \left(h(y)p_{Y}(y)\sum_{x} g(x)p_{X}(x)\right)$$
Terms dependent on y  
are constant in integral of x  

$$= \left(\sum_{x} g(x)p_{X}(x)\right)\left(\sum_{y} h(y)p_{Y}(y)\right)$$
Summations separate  

$$= \sum_{y} E[g(X)]E[h(Y)]_{d \text{ Lery Care, CSLOB, Spreg 2024}}$$
Stanford University 40

#### Variance of Sums of Variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Proof:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \qquad \begin{array}{l} \text{Symmetry of covariance} \\ \operatorname{Cov}(X, X) = \operatorname{Var}(X) \\ = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \qquad \begin{array}{l} \text{Adjust summation bounds} \end{array}$$

Stanford University 41

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024