14: Conditional Expectation

Jerry Cain
May 1 ${ }^{\text {st }}, 2024$

Lecture Discussion on Ed

Discrete conditional distributions

Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F :

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$
\begin{gathered}
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \\
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
\end{gathered}
$$

Discrete probabilities of CSı9

Each student responds with:

Year Y

- 1: Freshmen and Sophomores
- 2: Juniors and Seniors

	Joint PMF		
	$Y=1$	$Y=2$	$Y=3$
$T=-1$.06	.01	.01
$T=0$.29	.14	.09
$T=1$.30	.08	.02
		$P(Y=2, T=1)$	

Mood T :

- -1 :
- 0 :
- 1:

Discrete probabilities of CSio9

The below are conditional probability tables for conditional PMFs (A) $P(Y=y \mid T=t)$ and (B) $P(T=t \mid Y=y)$.

1. Which is which?

Joint PMF
2. What's the missing probability?

	$Y=1$	$Y=2$	$Y=3$
$T=-1$.06	.01	.01
$T=0$.29	.14	.09
$T=1$.30	.08	.02

\[

\]

Discrete probabilities of CSio9

The below are conditional probability tables for conditional PMFs (A) $P(Y=y \mid T=t)$ and (B) $P(T=t \mid Y=y)$.

	$Y=1$	$Y=2$	$Y=3$
$T=-1$.06	.01	.01
$T=0$.29	.14	.09
$T=1$.30	.08	.02

2. What's the missing probability?

$$
\begin{array}{c|ccc}
& & \text { (B) } P(T=t \mid Y=y) \\
& Y=1 Y=2 Y=3 \\
\hline T=-1 & .09 & .04 & .08 \\
T=0 & .45 & .61 & .75 \\
T=1 & .46 & .35 & .17 \\
.30 /(.06+.29+.30) &
\end{array}
$$

(A) $P(Y=y \mid T=t)$			
	$Y=1 Y=2 Y=3$		
$T=-1$.75	.125	.125
$1-.75-.125$			
$T=0$.56	.27	.17
$T=1$.75	.2	.05

Conditional PMFs also sum to 1 conditioned on different events!

Number or function?

1. $P(X=2 \mid Y=5)$
2. $P(X=x \mid Y=5)$
3. $P(X=2 \mid Y=y)$
4. $P(X=x \mid Y=y)$

True or false?

5. $\sum_{x} P(X=x \mid Y=5)=1$
6. $\sum_{y} P(X=2 \mid Y=y)=1$
7. $\sum_{x} \sum_{y} P(X=x \mid Y=y)=1$
8. $\sum_{x}\left(\sum_{y} P(X=x \mid Y=y) P(Y=y)\right)=1$

Quick check

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Number or function?

1. $P(X=2 \mid Y=5)$
number
2. $P(X=x \mid Y=5)$

1-D function
3. $P(X=2 \mid Y=y)$

1-D function
4. $P(X=x \mid Y=y)$

2-D function

True or false?
5. $\sum_{x} P(X=x \mid Y=5)=1 \quad$ true
6. $\sum_{y} P(X=2 \mid Y=y)=1 \quad$ false
7. $\sum_{x} \sum_{y} P(X=x \mid Y=y)=1$
8. $\sum_{x}\left(\sum_{y} P(X=x \mid Y=y) P(Y=y)\right)=1$

Conditional Expectation

Conditional expectation

Recall the the conditional PMF of X given $Y=y$:

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

The conditional expectation of X given $Y=y$ is

$$
E[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Note that $E[X]$ is a well-defined statistic even when X is one of many random variables in a multivariate distribution: $E[X]=\sum_{x} \sum_{y} x p_{X, Y}(x, y)$
- $E[X \mid Y=y]$ is the average value of X when Y is constrained to take on a specific value of $y: E[X \mid Y=y]=\sum_{x} x p_{X, Y}(x \mid y)$

It's been so long, our dice friends

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Roll two 6-sided dice.
- Let roll 1 be D_{1}, roll 2 be D_{2}.
- Let $S=$ value of $D_{1}+D_{2}$.

1. What is $E\left[S \mid D_{2}=6\right]$? $\quad E\left[S \mid D_{2}=6\right]=\sum_{x} x P\left(S=x \mid D_{2}=6\right)$

$$
=\left(\frac{1}{6}\right)(7+8+9+10+11+12)
$$

$$
=\frac{57}{6}=9.5
$$

Intuitively: $\quad 6+E\left[D_{1}\right]=6+3.5=9.5$ We'll prove in a moment

Properties of conditional expectation

1. LOTUS:

$$
E[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y)
$$

2. Linearity of conditional expectation:

$$
E\left[\sum_{i=1}^{n} X_{i} \mid Y=y\right]=\sum_{i=1}^{n} E\left[X_{i} \mid Y=y\right]
$$

3. Law of total expectation (in, like, three slides)

It's been so long, our dice friends

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Roll two 6-sided dice.
- Let roll 1 be D_{1}, roll 2 be D_{2}.
- Let $S=$ value of $D_{1}+D_{2}$.

1. What is $E\left[S \mid D_{2}=6\right]$?

$$
\frac{57}{6}=9.5
$$

2. What is $E\left[S \mid D_{2}\right]$?
A. A function of S
B. A function of D_{2}
C. A number
3. Give an expression for $E\left[S \mid D_{2}\right]$.

It's been so long, our dice friends

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Roll two 6-sided dice.
- Let roll 1 be D_{1}, roll 2 be D_{2}.
- Let $S=$ value of $D_{1}+D_{2}$.

1. What is $E\left[S \mid D_{2}=6\right]$? $\quad \frac{57}{6}=9.5$
2. What is $E\left[S \mid D_{2}\right]$?
A. A function of S
B. A function of D_{2}
C. A number
3. Give an expression for $E\left[S \mid D_{2}\right]$.

$$
\begin{aligned}
& E\left[S \mid D_{2}=d_{2}\right]=E\left[D_{1}+d_{2} \mid D_{2}=d_{2}\right] \\
& \quad=\sum_{d_{1}}\left(d_{1}+d_{2}\right) P\left(D_{1}=d_{1} \mid D_{2}=d_{2}\right) \\
& \quad=\sum_{d_{1}} d_{1} P\left(D_{1}=d_{1}\right)+d_{2} \sum_{d_{1}} P\left(D_{1}=d_{1}\right)_{\substack{\left(D_{1}=d_{1}, D_{2}=d_{2} \\
\text { indeenendent } \\
\text { events }\right)}} \quad=E\left[D_{1}\right]+d_{2}=3.5+d_{2} \quad E\left[S \mid D_{2}\right]=3.5+D_{2}
\end{aligned}
$$

Law of Total Expectation

Properties of conditional expectation

1. LOTUS:

$$
E[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y)
$$

2. Linearity of conditional expectation:

$$
E\left[\sum_{i=1}^{n} X_{i} \mid Y=y\right]=\sum_{i=1}^{n} E\left[X_{i} \mid Y=y\right]
$$

3. Law of total expectation:

$$
E[X]=E[E[X \mid Y]] \text { what? }
$$

Proof of Law of Total Expectation

$E[X]=E[E[X \mid Y]]$

$$
\begin{array}{rlr}
E[E[X \mid Y]]=E[g(Y)]=\sum_{y} P(Y=y) E[X \mid Y=y] & \text { (LOTUS, } g(Y)=E[X \mid Y]) \\
& =\sum_{y} P(Y=y) \sum_{x} x P(X=x \mid Y=y) & \begin{array}{r}
\text { (def of } \\
\text { conditional } \\
\text { expectation) }
\end{array} \\
& =\sum_{y}\left(\sum_{x} x P(X=x \mid Y=y) P(Y=y)\right)=\sum_{y}\left(\sum_{x} x P(X=x, Y=y)\right) & \text { (chain rule) } \\
& =\sum_{x} \sum_{y} x P(X=x, Y=y)=\sum_{x} x \sum_{y} P(X=x, Y=y) & \text { (switch order of } \\
\text { summations) } \\
& =\sum_{x} x P(X=x) & \text { (marginalization) } \\
& =E[X] &
\end{array}
$$

$$
E[E[X \mid Y]]=\sum_{y} P(Y=y) E[X \mid Y=y]=E[X]
$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute $E[X]$ as follows:

1. Compute expectation of X given some value of $Y=y$
2. Repeat step 1 for all values of Y
3. Compute a weighted sum (where weights are $P(Y=y)$)
```
def recurse():
    if random.random() < 0.5:
        return 3
    return 2 + recurse()
```


Analyzing recursive code

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1, 2, 3])
    if }x==1: return 3
    if }x==2: return 5 + recurse(
    return 7 + recurse()
```


Analyzing recursive code

$$
E[X]=E\left[E[|Y| Y]=\sum_{y} E[|X| Y=y] P(Y=y)\right.
$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if x == 1: return 3
    if x == 2: return 5 + recurse()
    return 7 + recurse()
```

Let $Y=$ return value of recurse ().
What is $E[Y]$?
$E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)$
$E[Y \mid X=1]=3$
When $X=1$, return 3.

Analyzing recursive code

$$
E[\mid]=E[E[|X| Y]]=\sum_{v} E[|X| Y=Y] P(\text { iscorete })
$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1, 2, 3])
    if }x==1: return 3
    if }x== 2: return 5 + recurse(
    return 7 + recurse()
```

Let $Y=$ return value of recurse ().
What is $E[Y]$?
$E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)$
$E[Y \mid X=1]=3$

What is $E[Y \mid X=2]$?
A. $E[5]+Y$
B. $E[5+Y]=5+E[Y]$
C. $5+E[Y \mid X=2]$

Analyzing recursive code

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1, 2, 3])
    if }x==1: return 3
    if }x==2: return 5 + recurse(
    return 7 + recurse()
```

$E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)$
$E[Y \mid X=1]=3 \quad$ When $X=2$, return $5+$
a future return value of recurse().

What is $E[Y \mid X=2]$?
A. $E[5]+Y$
B. $E[5+Y]=5+E[Y]$
C. $5+E[Y \mid X=2]$

Analyzing recursive code

$$
E[\mid]=E[E[|X| Y]]=\sum_{v} E[|X| Y=Y] P(\text { iscorete })
$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1, 2, 3])
    if }x==1: return 3
    if }x==2: return 5 + recurse(
    return 7 + recurse()
```

Let $Y=$ return value of recurse ().
What is $E[Y]$?
$E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)$
$E[Y \mid X=1]=3 \quad E[Y \mid X=2]=5+E[Y] \quad$ When $X=3$, return
$7+$ a future return value
of recurse().
$E[Y \mid X=3]=E[7+Y]$

Analyzing recursive code

$$
E[X]=E[E[|X| Y]]=\sum_{v} E\left[|X| Y=Y \left\lvert\, \begin{array}{l}
\text { If iscrete e }
\end{array}\right.\right.
$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1, 2, 3])
    if }x==1: return 3
    if }x== 2: return 5 + recurse(
    return 7 + recurse()
```

$E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)$
$E[Y \mid X=1]=3 \quad E[Y \mid X=2]=5+E[Y] \quad E[Y \mid X=3]=7+E[Y]$
$E[Y]=3(1 / 3)+(5+E[Y])(1 / 3) \quad+\quad(7+E[Y])(1 / 3)$
$E[Y]=(1 / 3)(15+2 E[Y])=5+(2 / 3) E[Y]$
$E[Y]=15$

Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$
\begin{gathered}
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{P(X=x) P(Y=y)}{P(Y=y)}=P(X=x) \\
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{p_{X}(x) p_{Y}(y)}{p_{Y}(y)}=p_{X}(x)
\end{gathered}
$$

Note for conditional expectation, independent X and Y implies

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)=\sum_{x} x p_{X}(x)=E[X]
$$

Random number of random variables

Suppose you have a website: dorisisthebeast.com. Let:

- $X=\#$ of people per day who visit your site. $\quad X \sim \operatorname{Poi}(50)$
- $Y_{i}=\#$ of minutes spent per day by visitor $i \quad Y_{i} \sim \operatorname{Poi}(11)$
- X and all Y_{i} are independent.
The time spent by all visitors per day is $W=\sum_{i=1}^{X} Y_{i}$. What is $E[W]$?

Random number of random variables

Suppose you have a website: dorisisthebeast.com. Let:

- $X=\#$ of people per day who visit your site. $X \sim \operatorname{Poi}(50)$
- $Y_{i}=\#$ of minutes spent per day by visitor $i . \quad Y_{i} \sim \operatorname{Poi}(11)$
- X and all Y_{i} are independent.
The time spent by all visitors per day is $W=\sum_{i=1}^{X} Y_{i}$. What is $E[W]$?

$$
\begin{aligned}
& \left.[W]\left[{ }^{X} Y_{i}\right]=\left[\left[\sum^{X} Y_{i} \mid X\right]\right] \quad \downarrow{ }^{X}\right] \\
& \text { Suppose } X=x \text {. } \\
& E\left[\sum_{i}^{x} Y_{i} \mid X=x\right]=\sum_{i=1}^{x} E\left[Y_{i} \mid X=x\right] \quad \text { (linearity) } \\
& =E\left[X E\left[Y_{i}\right]\right] \\
& =E\left[Y_{i}\right] E[X] \quad\left(\text { scalar } E\left[Y_{i}\right]\right) \\
& =\sum_{i=1}^{x} E\left[Y_{i}\right] \\
& =x E\left[Y_{i}\right]
\end{aligned}
$$

