14: Conditional Expectation

Jerry Cain May 1st, 2024

Lecture Discussion on Ed

Discrete conditional distributions

Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, $p_{X|}$ same idea:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Discrete probabilities of CS109

Each student responds with: Year *Y*

- 1: Freshmen and Sophomores
- 2: Juniors and Seniors
- 3: Graduate Students and SCPD

Mood T:

- -1: 😕
- 0: 😐
- 1: 🕰

	Joint PMF						
	Y = 1	Y = 2	Y = 3				
T = -1	.06	.01	.01				
T = 0	.29	.14	.09				
T = 1	.30	.08	.02				
P(Y = 2, T = 1)							

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Joint PMFs sum to 1.

Discrete probabilities of CS109

The below are conditional probability	Joint PMF				
tables for conditional PMFs		Y = 1	Y = 2	Y = 3	
(A) $P(Y = v T = t)$ and (B) $P(T = t Y = v)$	= -1	.06	.01	.01	
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$	T = 0	.29	.14	.09	
L. Which is which?	T = 1	.30	.08	.02	

2. What's the missing probability?

	Y = 1	Y = 2	Y = 3		Y = 1	Y = 2	Y = 3
T = -1	.09	.04	.08	T = -1	.75	.125	?
T = 0	.45	.61	.75	T = 0	.56	.27	.17
T = 1	.46	.35	.17	T = 1	.75	.2	.05

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Discrete probabilities of CS109

The below are conditional proba					ability				Joint PMF			
tables for conditional PMFs				Jiney				Y = 1	Y = 2	Y = 3		
(A) $P(Y - y T - t)$ and (B) $P(T - t Y - y)$)	T =	-1	.06	.01	.01			
(A) $I(I = y I = t)$ and (b) $I(I = t I = y)$						<i>T</i> =	= 0	.29	.14	.09		
1. Which is which?						<i>T</i> =	= 1	.30	.08	.02		
2. Wha	t's the	missin	g proba	ability?	>			I				
	(B) P(7	r = t Y	y' = y			(A)	$P(\mathbf{x})$	Y = y	V T =	<i>t</i>)		
	Y = 1	Y = 2	Y = 3			Y	= 1	Y =	2 Y =	3		
T = -1	.09	.04	.08		T = -1		75	.125	5 .12	5 17	′ 5- . 125	
T = 0	.45	.61	.75		T = 0		56	.27	.17	7		
T = 1	.46	.35	.17		T = 1		75	.2	.05	5		
.30/(.06+.29+.30) Conditional PMFs also sum to 1 conditioned o							ioned on					
					different events!							

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

True or false?

1. P(X = 2|Y = 5)2. P(X = x|Y = 5)3. P(X = 2|Y = y)4. P(X = x|Y = y)5. $\sum_{x} P(X = x|Y = 5) = 1$ 6. $\sum_{y} P(X = 2|Y = y) = 1$ 7. $\sum_{x} \sum_{y} P(X = x|Y = y) = 1$ 8. $\sum_{x} \left(\sum_{y} P(X = x|Y = y)P(Y = y)\right) = 1$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

- 1. P(X = 2|Y = 5)number
- 2. P(X = x | Y = 5)1-D function
- 3. P(X = 2|Y = y)1-D function
- 4. P(X = x | Y = y)2-D function

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1 \quad \text{true}$$

6.
$$\sum_{y} P(X = 2 | Y = y) = 1 \quad \text{false}$$

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1 \quad \text{false}$$

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1 \quad \text{true}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional Expectation

Conditional expectation

Recall the the conditional PMF of X given Y = y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The **conditional expectation** of *X* given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

- Note that E[X] is a well-defined statistic even when X is one of many random variables in a multivariate distribution: $E[X] = \sum_{x} \sum_{y} x p_{X,Y}(x, y)$
- E[X|Y = y] is the average value of X when Y is constrained to take on a specific value of y: $E[X|Y = y] = \sum_{x} x p_{X,Y}(x|y)$

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.

 $E[X|Y = y] = \sum x p_{X|Y}(x|y)$

1. What is
$$E[S|D_2 = 6]$$
? $E[S|D_2 = 6] = \sum_x xP(S = x|D_2 = 6)$
 $= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12)$
 $= \frac{57}{6} = 9.5$

Intuitively: $6 + E[D_1] = 6 + 3.5 = 9.5$ We'll prove in a moment

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation (in, like, three slides)

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- **2.** What is $E[S|D_2]$?
 - A. A function of S
 - **B.** A function of D_2
 - C. A number
- 3. Give an expression for $E[S|D_2]$.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- 2. What is $E[S|D_2]$?
 - A. A function of S B. A function of D_2 C. A number
- 3. Give an expression for $E[S|D_2]$.

 $E[X|Y = y] = \sum x p_{X|Y}(x|y)$

$$E[S|D_{2} = d_{2}] = E[D_{1} + d_{2}|D_{2} = d_{2}]$$

=
$$\sum_{d_{1}} (d_{1} + d_{2})P(D_{1} = d_{1}|D_{2} = d_{2})$$

=
$$\sum_{d_{1}} d_{1}P(D_{1} = d_{1}) + d_{2}\sum_{d_{1}} P(D_{1} = d_{1}) \xrightarrow{\text{independent}}_{\text{events}}$$

 $= E[D_1] + d_2 = 3.5 + d_2$

 $E[S|D_2] = 3.5 + D_2$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

 $\frac{57}{6} = 9.5$

Law of Total Expectation

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i \mid Y = y]$$

3. Law of total expectation:

$$E[X] = E[E[X|Y]] \quad \text{what?}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Proof of Law of Total Expectation

E[X] = E[E[X|Y]]

$$E[E[X|Y]] = E[g(Y)] = \sum_{y} P(Y = y)E[X|Y = y]$$
(LOTUS, $g(Y) = E[X|Y]$)
$$= \sum_{y} P(Y = y) \sum_{x} xP(X = x|Y = y)$$
(def of conditional expectation)

conditional expectation)

$$=\sum_{y}\left(\sum_{x}xP(X=x|Y=y)P(Y=y)\right)=\sum_{y}\left(\sum_{x}xP(X=x,Y=y)\right)$$
 (chain rule)

$$= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$

(switch order of summations)

(marginalization)

= E[X]

 $=\sum_{x}xP(X=x)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Another way to compute E[X]

$$E[E[X|Y]] = \sum_{y} P(Y=y)E[X|Y=y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute E[X] as follows:

- **1.** Compute expectation of *X* given some value of Y = y
- 2. Repeat step 1 for all values of Y
- 3. Compute a weighted sum (where weights are P(Y = y))

```
def recurse():
    if random.random() < 0.5:
        return 3
    return 2 + recurse()</pre>
```

Useful for analyzing recursive code.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():

```
# equally likely values 1,2,3
```

```
x = np.random.choice([1,2,3])
```

```
if x == 1: return 3
```

```
if x == 2: return 5 + recurse()
```

```
return 7 + recurse()
```

```
E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)
```

Let Y =return value of **recurse ()**. What is E[Y]?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if x == 1: return 3
 if x == 2: return 5 + recurse()
 return 7 + recurse()

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

Let Y =return value of **recurse ()**. What is E[Y]?

 $E[Y] = \frac{E[Y|X = 1]}{P(X = 1)} + \frac{E[Y|X = 2]P(X = 2)}{F[Y|X = 3]P(X = 3)}$ E[Y|X = 1] = 3When X = 1, return 3.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if x == 1: return 3
 if x == 2: return 5 + recurse()
 return 7 + recurse()

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y = return value of **recurse()**. What is E[Y]?

 $E[Y] = E[Y|X = 1]P(X = 1) + \frac{E[Y|X = 2]}{P(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{P(X = 3)}$

E[Y|X=1]=3

What is E[Y|X = 2]? A. E[5] + YB. E[5 + Y] = 5 + E[Y]C. 5 + E[Y|X = 2]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if x == 1: return 3
 if x == 2: return 5 + recurse()
 return 7 + recurse()

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y = return value of **recurse()**. What is E[Y]?

 $E[Y] = E[Y|X = 1]P(X = 1) + \frac{E[Y|X = 2]}{P(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{P(X = 3)}$

E[Y|X = 1] = 3 When X = 2, return 5 + a future return value of recurse (). What is E[Y|X = 2]? A. E[5] + YB. E[5 + Y] = 5 + E[Y]C. 5 + E[Y|X = 2]

Stanford University 22

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if x == 1: return 3
 if x == 2: return 5 + recurse()
 return 7 + recurse()

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y = return value of **recurse()**. What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)

E[Y|X = 1] = 3 E[Y|X = 2] = 5 + E[Y] When X = 3, return

When X = 3, return 7 + a future return value of **recurse ()**.

E[Y|X=3] = E[7+Y]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if x == 1: return 3
 if x == 2: return 5 + recurse()
 return 7 + recurse()

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

Let Y = return value of **recurse()**. What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3) $E[Y|X = 1] = 3 \qquad E[Y|X = 2] = 5 + E[Y] \qquad E[Y|X = 3] = 7 + E[Y]$ E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3) E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y] E[Y] = 15On your own: What is Var(Y)?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Independent RVs, defined another way

If X and Y are **independent** discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent *X* and *Y* implies

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y) = \sum_{x} x p_{X}(x) = E[X]$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Random number of random variables

indep X, Y E[X|Y = y] = E[X]

Suppose you have a website: dorisisthebeast.com. Let:

- X = # of people per day who visit your site. $X \sim Poi(50)$
- $Y_i = \#$ of minutes spent per day by visitor $i \qquad Y_i \sim \text{Poi}(11)$

• X and all Y_i are independent. The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is E[W]?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Random number of random variables

Suppose you have a website: dorisisthebeast.com. Let: • X = # of people per day who visit your site. $X \sim Poi(50)$ • $Y_i = \#$ of minutes spent per day by visitor *i*. $Y_i \sim Poi(11)$ • X and all Y_i are independent. The time spent by all visitors per day is $W = \sum_{i=1}^{N} Y_i$. What is E[W]? $E[W] = E\left[\sum_{i=1}^{X} Y_i\right] = E\left[E\left[\sum_{i=1}^{X} Y_i | X\right]\right]$ Suppose X = x. $E\left[\sum_{i=1}^{x} Y_i | X = x\right] = \sum_{i=1}^{x} E[Y_i | X = x]$ (linearity) $= E \left| X E [Y_i] \right|$ $=\sum E[Y_i]$ (independence) $= E[Y_i]E[X]$ $(\text{scalar } E[Y_i])$ $= x E[Y_i]$ $= 11 \cdot 50 = 550$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024