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Section 2: Conditional Probability and Bayes
Chris Piech, Mehran Sahami, Jerry Cain, Lisa Yan, and numerous CS109 CA’s.

Overview of Section Materials
The warm-up questions provided will help students practice concepts introduced in lectures. The section prob-
lems are meant to apply these concepts in more complex scenarios similar to what you will see in problem sets
and exams. In fact, many of them are old exam questions.

Before you leave lab, make sure you click here so that you’re marked as having attended this week’s section. The
CA leading your discussion section can enter the password needed once you’ve submitted.

Warm-ups
1. Definitions: Cite Bayes’ Theorem. Can you explain why 𝑃(𝐴|𝐵) is different than 𝑃(𝐵 |𝐴)?

2. True or False. Note that true means true for ALL cases.

(a) In general, 𝑃(𝐴𝐵|𝐶) = 𝑃(𝐵 |𝐶)𝑃(𝐴|𝐵𝐶)
(b) If 𝐴 and 𝐵 are independent, so are 𝐴 and 𝐵𝐶 .

1 Taking Expectation: Breaking Vegas
Preamble: When a random variable fits neatly into a family we’ve seen before (e.g. Binomial), we get its expec-
tation for free. When it does not, we have to use the definition of expectation.

Problem: If you bet on “Red” in Roulette, there is 𝑝 = 18/38 that you with win $Y and a (1− 𝑝) probability that
you lose $Y. Consider this algorithm for a series of bets:

Let Y = $1. First you bet Y. If you win, then stop. If you lose, then set Y to be 2Y and repeat.

What are your expected winnings when you stop? It will help to recall that the sum of a geometric series 𝑎0+𝑎1+
𝑎2 + · · · = 1

1−𝑎 if 0 < 𝑎 < 1. Vegas breaks you: Why doesn’t everyone do this?

https://web.stanford.edu/class/cs109/cgi-bin/lab2


2 Conditional Probabilities: Missing Not at Random

Preamble: We have three big tools for manipulating conditional probabilities:

• Definition of conditional probability: 𝑃(𝐸𝐹) = 𝑃(𝐸 |𝐹)𝑃(𝐹)

• Law of Total Probability: 𝑃(𝐸) = 𝑃(𝐸𝐹) + 𝑃(𝐸𝐹𝐶) = 𝑃(𝐸 |𝐹)𝑃(𝐹) + 𝑃(𝐸 |𝐹𝐶)𝑃(𝐹𝐶)

• Bayes Rule: 𝑃(𝐸 |𝐹) = 𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹) =

𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹 |𝐸)𝑃(𝐸)+𝑃(𝐹 |𝐸𝐶 )𝑃(𝐸𝐶 )

This is a good time to commit these three to memory and start thinking about when each of them is useful.

Problem: You collect data on whether or not people intend to vote for Ayesha, a candidate in an upcoming elec-
tion. You send an electronic poll to 100 randomly chosen people. You assume all 100 responses are independent
and identically distributed.

User Response Count

Responded that they will vote for Ayesha 40
Responded that they will not vote for Ayesha 45
Did not respond 15

Let 𝐴 be the event that a person will vote for Ayesha. Let 𝑀 be the event that a user did not respond to the poll.
We are interested in estimating 𝑃(𝐴), though computing that estimate is difficult, given that 15 users didn’t actu-
ally respond.

a. What is the probability that a user said they will vote for Ayesha and that they responded to the poll 𝑃(𝐴 and 𝑀𝐶)?

b. Which formula from class would you use to calculate 𝑃(𝐴)? Your formula should rely on the context that
voters for Ayesha are in one of two (mutually exclusive) groups: those that missed the poll, and those that
did not.

c. Calculate the 𝑃(𝐴). You estimate that the probability that a voter is missing, given that they were going to
vote for Ayesha is 𝑃(𝑀 |𝐴) = 1

5 .

3 Sending Bits to Space

Preamble: When sending binary data to satellites (or really over any noisy channel), the bits can be flipped with
high probability. In 1947, Richard Hamming developed a system to more reliably send data. By using Error Cor-
recting Hamming Codes, you can send a stream of 4 bits along with 3 redundant bits. If zero or one of the seven
bits are corrupted, using error correcting codes, a receiver can identify the original 4 bits.

Problem: Lets consider the case of sending a signal to a satellite where each bit is independently flipped with
probability 𝑝 = 0.1.

a. If you send 4 bits, what is the probability that the correct message was received (i.e. none of the bits are
flipped).



b. If you send 4 bits, with 3 Hamming error correcting bits, what is the probability that an interpretable mes-
sage (i.e. a message with zero or one errors) was received?

c. Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If for every single
bit, more than 50 of the copies are not flipped, the signal will be correctable. What is the probability that a
correctable message was received?

Extra: Explanation of the ”Hamming(7,4)” technique

If we are trying to transmit 4 bits, we can send an additional 3 ”parity” bits that we can use to correct our orig-
inal message if a bit gets flipped due to an error in transmission. Consider the diagram. The data bits are 𝑑1
through 𝑑4. The ”parity” bits are 𝑝1 through 𝑝3. A parity bit is set to whatever value would make it’s large cir-
cle have an even number of bits. For example, the green circle consists of 𝑝1, 𝑑1, 𝑑2, and 𝑑4. If 𝑑1 = 1, 𝑑2 = 1,
and 𝑑4 = 1, then 𝑝1 would be set to 1 in order to ensure there are an even number of bits in that circle (in this
case, 4 bits).

Convince yourself that a single error which appeared in any bit could be identified and corrected! For example,
if 𝑑2 is flipped, it would throw off the parity for the green and red circles. Therefore, flipping 𝑑2 back is the only
way to correct the parity. As another example, if 𝑝2 is flipped, then only the blue circle would have a parity is-
sue, and flipping 𝑝2 back is the unique solution to fixing the parity.
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