CS109: Probability for Computer Scientists
 April 1, 2024

Lecture Discussion on Ed

Welcome to CSiog!

Jerry Cain

I went here from 1987
through 1991 and majored in chemistry.

Then I came here for a PhD in chem, switched to CS

Received MSCS 1998
Lecturer: nearly 28 years

My interests over time

Chemistry
and Physics
Computer
Science
STEM
Education

Why Jerry likes probability

- I majored in chemistry and focused on physical chemistry-thermodynamics, quantum mechanics, etc.-and my undergraduate research was rooted in surface science and statistical mechanics.
- When I switched to CS as a grad student here, I focused on CS theory and all the beautiful mathematics that comes with it.
- Probability has revived parts of AI and information theory that were thought to be borderline dead when I was getting my MSCS degree here during the 90's.

1974

1996

$$
P V=\frac{1}{3} N m v_{\mathrm{rms}}^{2} . \quad f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} v^{2} e^{-\frac{m v^{2}}{2 k T}} \quad v_{\mathrm{rms}}^{2}=\int_{0}^{\infty} v^{2} f(v) d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} \int_{0}^{\infty} v^{4} e^{-\frac{m v^{2}}{2 k T}} d v
$$

What makes this quarter important

We are seeing a huge surge in statistics, predictions, and probabilistic models shared through global news, governing bodies, and social media.
The technological and social innovation we develop during this time will strongly influence how we solve interesting problems impacting the lives of countless people across the globe.

National Weather
Service Alerts https://www.weather.gov/

World Politics
https://abcnews.go.com/538
https://www.nytimes.com/ https://www.economist.com/

Course Mechanics

Prerequisites

CS106B

Programming
Recursion Hash tables Binary trees

MATH 51

Multivariate differentiation Multivariate integration Working knowledge of linear algebra (e.g., vectors)

CS103

Proofs (induction)
Set theory
Mathematical
maturity

Companion class: CSiogACE

- CS109ACE is an extra 1-unit "ACE" section that provides additional support, practice, and instruction for undergraduate students concerned about their preparation and mathematical background.
- Meets for an additional weekly section and has additional review sessions, office hours, and practice problems
- Admission is via application. You can ignore the published deadline in the form, as our CS109ACE application is due this Friday, April $5^{\text {th }}$ at 5:00pm.
- CS109ACE meets on Mondays from 5:30-7:20pm, (location TBD) and starts on April 8th.
- Feel free to email Michelle Qin at mdqin@stanford.edu with any questions.

Michelle Qin

Course components

42\% 6 Problem Sets

22\% Two Midterms

21\% Final Exam

5\% Section Participation

10\% Concept Checks

Course components

42\% 6 Problem Sets

22\% Two Midterms

Final Exam

Section Participation

10\%
Concept Checks

Written portion
LATEX - LaTeX for powerful typesetting

- Tutorial on CS109 website

Coding portion in Python
ค python - Review session on Thursday 04/04 at noon in Huang 018

Late policy

- Need a short extension? No need to ask! Take an extra class period.
- Need a longer extension? Just ask us and we'll probably be okay with it.
- Extensions can be at most two extra class periods.

Course components

42\%

22\%

21\%

5\%

10\%

6 Problem Sets

Two Midterms

Final Exam

Section Participation

Concept Checks

- In person! But held outside of class so we can let you work sans time pressure.
- Closed-book, mostly-closed-notes, closedcomputer, no calculators.
- You can bring two 8.5 " $\times 11$ " pages of notes-using both sides-and refer to them during the exams.
- Held on Wednesdays.
- Week 4: Wed, 04/24, 7:00-9:00pm
- Week 7: Wed, 05/15, 7:00-9:00pm
- Irreconcilable Conflict? Let Jerry know and we'll work something out.

Course components

21\% Final Exam

42\%

22\%

5\%

10\%

6 Problem Sets

Two Midterms

Section Participation

Concept Checks

- Scheduled for Saturday, June $8^{\text {th }}$ from 8:30 until 11:30am (our official time).
- Closed-book, mostly-closed-notes, closed computer, no calculators.
- You can prepare four 8.5 " x 11 " pages of notes-using both sides-and refer to them and a provided reference sheet during the exam.
- Conflict with another final exam? I'll offer the final on Friday, June $7^{\text {th }}$ from 12:15pm to $3: 15 \mathrm{pm}$ for those with a documented conflict with another final exam.

Course components

42\%

22\%

21\%

5\%

10\%

6 Problem Sets

Two Midterms

Final Exam

Section Participation

Concept Checks

- Sections meet on Thursdays and Fridays. Times are already posted right here.
- Sections start Week 2
- Your section grade is 100%, but each absence (beyond one freebie) reduces the weight of section participation and increases the weight of the final exam
- Go to section!

Course components

42\% 6 Problem Sets

Two Midterms

Final Exam

Concept Checks

- Short set of questions released after each lecture.
- Questions are straightforward and there to ensure you've absorbed the key points and formulas from class.
- All of Week n's concept checks are due the Tuesday of Week $n+1$ at noon.
- No late submissions accepted unless truly extenuating circumstances make it truly impossible to meet deadline.

CSio9 Contest

- Announced mid-quarter, genuinely optional
- Boost final course grades after letter grade buckets have been determined

Your baseline is CS109, and the sky is the limit.

Some of last quarter's winners:

- The Probability of Curing Cancer: Will My Clinical Trial Succeed?
- Modeling Indexical Fields as Bayesian Networks
- StatTuring: Distinguishing between LLM and Human text
- Parka: A Mobile App for Early Parkinson's Disease Detection

Why you should take CSio9

Traditional View of Probability

CS view of probability

http://www.site.com

Moonshot: Machine Learning

Binary Classification Silliness

Classification: Where is this useful?

A machine learning algorithm performs better than the best dermatologists.

Developed in 2017 at Stanford.

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks."
Nature 542.7639 (2017): 115-118.

Probability is more than just machine learning.

Probability and medicine

| $\substack { \operatorname{sex} \\ \begin{subarray}{c}{\operatorname{cosex} \\ \operatorname{cosex}{ \operatorname { s e x } \\ \begin{subarray} { c } { \operatorname { c o s e x } \\ \operatorname { c o s e x } } }$ |
| :---: | :---: | :---: | Predicted Hospital Resource Use in United States (IHME) https://covid19.healthdata.org /projections

How do COVID-19, RSV, and monkeypox testing rates in a region correlate with the actual spread of the disease?

Probability and art

Probability, Meteorology, and Earthquake Prediction

Probability and ethics

The golden rule for autonomous car ethics doesn't exist
a

b

So far, there are no unified ethical standards ... for autonomous cars. The big Moral Machine study conducted by MIT showed that it's hard to identify universal ethical values. The moral choices that people made in the MIT survey were different and varied even at a local level. That's why it's hard to create a universal ethics of self-driving cars that won't be controversial. [source]

Counting

What is Counting?

An experiment in probability:

Counting:
How many possible outcomes can occur by performing this experiment?

What is Counting Combinatorial Analysis?

Sum Rule of Counting, Inclusion-Exclusion Principle

If the outcome of an experiment can be either from
Set A, where $|A|=m$,

$$
\text { example: } \begin{aligned}
A & =\{2,4,6,8,10,12,14\} \\
B & =\{3,6,9,12,15\} \\
A \cap B & =\{6,12\}
\end{aligned}
$$

or Set B, where $|B|=n$,
where A and B may overlap, then
The total number of outcomes of the experimene is

$$
|A \cup B|=|A|+|B|-|A \cap B| . \quad \begin{aligned}
& \text { her, } m=7, n=5 \\
& \text { \#ruturmes in } A \cup B=7+5-2=10
\end{aligned}
$$

Product Rule of Counting

If an experiment has two parts, where
the first part's outcomes are drawn from A, where $|A|=m$, and the second part's outcomes are drawn from B, where $|B|=n$,
Then the number of outcomes of the experiment is

$$
\begin{aligned}
& |A||B|=m n . \\
& \{H, T\} \times\{H, T\} \Rightarrow H T \\
& \triangle T T \\
& \text { Two-step experiment } \\
& \longrightarrow A \longrightarrow B
\end{aligned}
$$

This generalizes to multistep experiments-i.e., three steps, five steps, fifty steps, and so forth.

Baby's First Example: Transmitting bytes over a network

An 8-bit string is sent over a network.

- The receiver only accepts strings that either start with 01 or end with 00.

How many 8-bit strings will the receiver accept?

Define

A : 8-bit strings
starting with 01
B : 8-bit strings
ending with 00

01001100

byte (8 bits)

Baby's First Example: Transmitting bytes over a network

An 8-bit string is sent over a network.

- The receiver only accepts strings that

01001100

 either start with 01 or end with 00.How many 8-bit strings will the $\stackrel{8}{\text { r }}$ eceiver accept?
byte (8 bits)
twi uptome for each
Define
A: 8-bit strings starting with 01 $B: 8$-bit strings ending with 00

$$
\begin{aligned}
\text { answer }=|A \cup B|=|A|+|B|-|A \cap B|= & 2^{6}+2^{6}-2^{4} \\
& =2 \cdot 2^{6}-2^{4} \\
& =2^{7}-2^{4}=112 \\
& \text { Stanford University }
\end{aligned}
$$

License plates

How many CA license plates are possible with each of the following formats?

(present day)

License plates

How many CA license plates are possible with each of the following formats?

$$
\underbrace{26}_{A-2} \cdot \underbrace{26}_{A-2} \cdot \underbrace{26}_{A-2} \cdot \underbrace{10}_{0-9} \cdot \underbrace{10}_{0-9} \cdot \underbrace{10}_{0-9}=26^{3} \cdot 10^{3}
$$

Permutations I

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

Arrange n indistinct objects

Arrange n distinct objects

Arrange n distinct objects

Steps:

1. Choose $1^{\text {st }}$ can 5 options
2. Choose $2^{\text {nd }}$ can 4 options

Permutations

```
CSIO6A has ym cmpule these iteratively
CSIO6B has gm compute these recunively
cslua reguivs ym count usirg them
```

A permutation is an ordered arrangement of objects.
ordered maans oder is impintant

The number of unique orderings (permutations) of n distinct objects is

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

$$
\text { other wrtation for this: } n!=\prod_{k=1}^{n} k
$$

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?
restated, hou mavy wags can we permute 234568?

Total $=6!\leftarrow$ the 1 sjust as gord of an answer as 720
$=720$ passcodes

```
>>> import math
>>> math.factorial(6)
720
```


Unique 6-digit passcodes with four smudges

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

next time we'll brak
this conutars porblem into multiple categories and comput the full
answer trazether.

