03: Intro to Probability
 Jerry Cain and Kanu Grover
 April ${ }^{\text {rd }}, 2024$

Lecture Discussion on Ed

Defining Probability

Key definitions

An experiment in probability:

Sample Space, S : The set of all possible outcomes of an experiment
Event, E : Some subset of $S(E \subseteq S)$.

Key definitions

Sample Space, S

- Coin flip $S=\{$ Heads, Tails $\}$
- Flipping two coins $S=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
- Roll of 6 -sided die $S=\{1,2,3,4,5,6\}$
- \# emails in a day
$S=\{x \mid x \in \mathbb{Z}, x \geq 0\}$
- TikTok hours in a day
$S=\{x \mid x \in \mathbb{R}, 0 \leq x \leq 24\}$

Event, E

- Flip lands heads
$E=\{$ Heads $\}$
- ≥ 1 head in two coin flips $E=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H})\}$
- Roll is 3 or less:
$E=\{1,2,3\}$
- Low email day (≤ 100 emails)
$E=\{x \mid x \in \mathbb{Z}, 0 \leq x \leq 100\}$
- Lost day (≥ 5 TikTok hours):
$E=\{x \mid x \in \mathbb{R}, 5 \leq x \leq 24\}$

What is a probability?

A number between 0 and 1 to which we ascribe meaning.*

*our belief that an event E occurs.

What is a probability?

Let $E=$ the set of outcomes where you hit the target.

$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

Hit: 0
Thrown: 0
$P(E) \approx$

What is a probability?

Let $E=$ the set of outcomes where you hit the target.

$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes where you hit the target.

$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes where you hit the target.

$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

Hit: 2
Thrown: 3
$P(E) \approx 0.667$

What is a probability?

Let $E=$ the set of outcomes where you hit the target.

$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

Axioms of Probability

Quick review of sets

E and F are events in S. Experiment:

Die roll
$S=\{1,2,3,4,5,6\}$
Let $E=\{1,2\}$, and $F=\{2,3\}$

Quick review of sets

E and F are events in S. Experiment:

Die roll

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \text { Let } E=\{1,2\}, \text { and } F=\{2,3\}
\end{aligned}
$$

def Union of events, $E \cup F$
The event containing all outcomes

$$
E \cup F=\{1,2,3\}
$$ in E or F.

Quick review of sets

E and F are events in S. Experiment:

Die roll

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \text { Let } E=\{1,2\}, \text { and } F=\{2,3\}
\end{aligned}
$$

def Intersection of events, $E \cap F$
The event containing all outcomes

$$
E \cap F=E F=\{2\}
$$ in E and F.

def Mutually exclusive events F and G means that $F \cap G=\varnothing$

Quick review of sets

E and F are events in S. Experiment:

Die roll

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \text { Let } E=\{1,2\} \text {, and } F=\{2,3\}
\end{aligned}
$$

def Complement of event E, E^{C}
The event containing all outcomes

$$
E^{C}=\{3,4,5,6\}
$$ in that are not in E.

Three Axioms of Probability

Definition of probability: $\quad P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$

Axiom 1:
$0 \leq P(E) \leq 1$

Axiom 2:
$P(S)=1$

Axiom 3:

If E and F are mutually exclusive ($E \cap F=\varnothing$), then $P(E \cup F)=P(E)+P(F)$

Axiom 3 is the (analytically) most useful axiom

Axiom 3: If E and F are mutually exclusive-that is, if $E \cap F=\emptyset$-then $P(E \cup F)=P(E)+P(F)$

More generally, for any sequence of mutually exclusive events E_{1}, E_{2}, \ldots :

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

just like the Sum Rule of Counting, but for probabilities

Equally Likely Outcomes

Equally Likely Outcomes

Some sample spaces have equally likely outcomes.

- Flipping one coin: $S=\{$ Head, Tails $\}$
- Flipping two coins: $S=\{(H, H),(H, T),(T, H),(T, T)\}$
- Roll of 6-sided die: $S=\{1,2,3,4,5,6\}$

If we have equally likely outcomes, then $\mathrm{P}($ Each outcome $)=\frac{1}{|S|}$
Therefore $P(E)=\frac{\# \text { outcomes in } \mathrm{E}}{\# \text { outcomes in } S}=\frac{|E|}{|S|}$ (by Axiom 3)

Roll two dice

$$
P(E)=\frac{|E|}{|S|} \begin{aligned}
& \text { Equally likely } \\
& \text { outcomes }
\end{aligned}
$$

Roll two 6-sided fair dice. What is $\mathrm{P}($ sum $=7)$?

$$
\begin{aligned}
S=\{ & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
\end{aligned}
$$

$E=$

Target revisited

$$
P(E)=\frac{|E|}{|S|} \begin{aligned}
& \text { Equally likely } \\
& \text { outcomes }
\end{aligned}
$$

Let $E=$ the set of outcomes where you hit the target.

Screen size $=800 \times 800$
Radius of target: 200
The dart is equally likely to land anywhere on the screen. What is $P(E)$, the probability of hitting the target?

$$
\begin{aligned}
& |S|=800^{2} \quad|E| \approx \pi \cdot 200^{2} \\
& P(E)=\frac{|E|}{|S|} \approx \frac{\pi \cdot 200^{2}}{800^{2}} \approx 0.1963
\end{aligned}
$$

Cats and sharks (note: stuffed animals)

$$
P(E)=\frac{|E|}{|S|} \text { Equally likely }
$$

4 cats and 3 sharks in a bag. 3 drawn. What is $\mathrm{P}(1$ cat and 2 sharks drawn $)$?

Question: Do indistinct objects give you an equally likely sample space?

Make indistinct items distinct to get equally likely outcomes.

$$
\text { A. } \frac{3}{7}
$$

$$
\text { B. } \frac{1}{4} \cdot \frac{2}{3}
$$

$$
\text { C. } \frac{4}{7}+2 \cdot \frac{3}{6}
$$

$$
\text { D. } \frac{12}{35}
$$

$$
\text { E. } 0
$$

Cats and sharks (ordered solution)

$$
P(E)=\frac{|E|}{|S|} \begin{aligned}
& \text { Equally likely } \\
& \text { outcomes }
\end{aligned}
$$

4 cats and 3 sharks in a bag. 3 drawn. What is $\mathrm{P}(1$ cat and 2 sharks drawn)?

Make indistinct items distinct
to get equally likely outcomes.

Define

- $S=$ Pick 3 distinct items
- $E=1$ distinct cat,

2 distinct sharks

Cats and sharks (unordered solution)
 $$
P(E)=\frac{|E|}{|S|} \begin{aligned} & \text { Equally likely } \\ & \text { outcomes } \end{aligned}
$$

4 cats and 3 sharks in a bag. 3 drawn. What is $\mathrm{P}(1$ cat and 2 sharks drawn $)$?

Make indistinct items distinct
to get equally likely outcomes.

Define

- $S=$ Pick 3 distinct items
- $E=1$ distinct cat,

2 distinct sharks

Exercises

CS109 so far

Counting tasks on n objects

Combinatorics

Counting? Probability? Distinctness?

We choose 3 books from a set of
4 distinct (distinguishable) and 2 indistinct (indistinguishable) books.
Each set of 3 books is equally likely.
Let event $E=$ our choice excludes one or both indistinct books.

1. How many distinct outcomes are in E ?
2. What is $P(E)$?

Poker Straights and Computer Chips

1. Consider equally likely 5 -card poker hands.

- Define "poker straight" as 5 consecutive rank cards of any suit
What is P (poker straight)?
- What is an example of an equally likely outcome?
- Should objects be ordered or unordered?

2. Computer chips: n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing.
What is P (defective chip is in k selected chips?)

1. Any Poker Straight

Consider equally likely 5 -card poker hands.

- "straight" is 5 consecutive rank cards of any suit What is P (Poker straight)?

Define

- S (unordered)
- E (unordered, consistent with S)

Compute $\quad P($ Poker straight $)=$

2. Chip defect detection

n chips are manufactured, 1 of which is defective.
k chips are randomly selected from n for testing.
What is P (defective chip is in k selected chips?)

Define

- S (unordered)
- E (unordered, consistent with S)

Compute

$$
P(E)=
$$

2. Chip defect detection, solution \#2

n chips are manufactured, 1 of which is defective.
k chips are randomly selected from n for testing.
What is P (defective chip is in k selected chips?)

Redefine experiment

1. Choose k indistinct chips (1 way)
2. Throw a dart and make one defective

Define

- S (unordered)
- E (unordered, consistent with S)

Corollaries of
 Probability

3 Corollaries of Axioms of Probability

Corollary 1 :

$$
P\left(E^{C}\right)=1-P(E)
$$

Corollary 2 :
If $E \subseteq F$, then $P(E) \leq P(F)$

Corollary 3:
$P(E \cup F)=P(E)+P(F)-P(E F)$
(Inclusion-Exclusion Principle for Probability)

Selecting Programmers

- $P($ student programs in Python $)=0.28$
- $\mathrm{P}($ student programs in $\mathrm{C}++)=0.07$
- $\quad \mathrm{P}($ student programs in Python and $\mathrm{C}++)=0.05$.

What is P (student does not program in (Python or $\mathrm{C}++)$)?

1. Define events
\& state goal
2. Identify known probabilities
3. Solve

Inclusion-Exclusion Principle (Corollary 3)

Corollary 3: $\quad P(E \cup F)=P(E)+P(F)-P(E F)$
General form: $\quad P\left({ }_{i=1}^{n} E_{i}\right)=\sum_{r=1}^{n}(-1)^{(r+1)} \sum_{i_{1}<\cdots<i_{r}} P\left({ }_{j=1}^{r} E_{i_{j}}\right)$

$$
\begin{array}{ll}
P(E \cup F \cup G)= \\
r=1: & P(E)+P(F)+P(G) \\
r=2: & -P(E \cap F)-P(E \cap G)-P(F \cap G) \\
r=3: & +P(E \cap F \cap G)
\end{array}
$$

Takeaway: Union of events

Axiom 3,

Mutually exclusive events

Corollary 3, Inclusion-Exclusion Principle

The challenge of probability is in defining events.
Some event probabilities are easier to compute than others.

Serendipity

Let it find you.

SERENDIPITY

 the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

WHEN YOU MEET YOUR BEST FRIEND
Somewhere you didn't expect to.

Serendipity

- The population of Stanford is $n=17,000$ people.
- You are friends with $r=100$ people.
- Walk into a room, see $k=223$ random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see someone you know in the room?
http://web.stanford.edu/class/cs109/demos/serendipity.html

Serendipity

- The population of Stanford is $n=17,000$ people.
- You are friends with $r=100$ people.
- Walk into a room, see $k=223$ random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see at least one friend in the room?

Define

- S (unordered)
- $E: \geq 1$ friend in the room

What strategy would you use?
A. $\quad P$ (exactly 1$)+P$ (exactly 2$)$
$P($ exactly 3$)+\cdots$
B. $1-P$ (see no friends)

Serendipity

- The population of Stanford is $n=17,000$ people.
- You are friends with $r=100$ people.
- Walk into a room, see $k=223$ random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see at least one friend in the room?

Define

- S (unordered)
- $E: \geq 1$ friend in the room

The Birthday Paradox Problem

What is the probability that in a set of n people, at least one pair of them share the same birthday?
For you to think about (and discuss in your first section)

Card Flipping

In a 52-card deck, cards are flipped one at a time.
After the first ace (of any suit) appears, consider the next card.
Is $\mathrm{P}($ next card $=$ Ace Spades $)<\mathrm{P}($ next card $=2$ Clubs $) ?$

Card Flipping

In a 52-card deck, cards are flipped one at a time.
After the first ace (of any suit) appears, consider the next card.
Is P (next card $=$ Ace Spades) $<P($ next card $=2$ Clubs)?
Sample space $\quad S=52$ in-order cards (shuffle deck)
Event $\quad E_{A S}$, next card is Ace Spades

1. Take out Ace of Spades.
2. Shuffle leftover 51 cards.
3. Add Ace Spades after first ace.

$$
\left|E_{A S}\right|=51!\cdot 1
$$

$E_{2 C}$, next card is 2 Clubs

1. Take out 2 Clubs.
2. Shuffle leftover 51 cards.
3. Add 2 Clubs after first ace.

$$
\left|E_{2 C}\right|=51!\cdot 1
$$

$$
P\left(E_{A S}\right)=P\left(E_{2 C}\right)
$$

