03: Intro to Probability

Jerry Cain and Kanu Grover April 3rd, 2024

Lecture Discussion on Ed

Defining Probability

Key definitions

An experiment in probability:

The set of all possible outcomes of an experiment Sample Space, S:

Event, E: Some subset of S ($E \subseteq S$).

Key definitions

Sample Space, S

- Coin flip $S = \{\text{Heads, Tails}\}$
- Flipping two coins $S = \{(H,H), (H,T), (T,H), (T,T)\}$
- Roll of 6-sided die $S = \{1, 2, 3, 4, 5, 6\}$
- # emails in a day $S = \{x \mid x \in \mathbb{Z}, x \ge 0\}$
- TikTok hours in a day $S = \{x \mid x \in \mathbb{R}, 0 \le x \le 24\}$

Event, E

- Flip lands heads $E = \{ \text{Heads} \}$
- ≥ 1 head in two coin flips $E = \{(H,H), (H,T), (T,H)\}$
- Roll is 3 or less: $E = \{1, 2, 3\}$
- Low email day (≤ 100 emails) $E = \{x \mid x \in \mathbb{Z}, \ 0 \le x \le 100\}$
- Lost day (≥ 5 TikTok hours): $E = \{x \mid x \in \mathbb{R}, 5 \le x \le 24\}$

A number between 0 and 1 to which we ascribe meaning.*

*our belief that an event E occurs.

$$P(E) = \lim_{n \to \infty} \frac{n(E')}{n}$$

n = # of total trials n(E) = # trials where E occurs

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n = # of total trials n(E) = # trials where E occurs

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n = # of total trials n(E) = # trials where E occurs

$$P(E) = \lim_{n \to \infty} \frac{n(E')}{n}$$

n = # of total trials n(E) = # trials where E occurs

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n = # of total trials n(E) = # trials where E occurs

Axioms of Probability

Experiment:

Die roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

Let
$$E = \{1, 2\}$$
, and $F = \{2, 3\}$

Experiment:

Die roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

Let
$$E = \{1, 2\}$$
, and $F = \{2, 3\}$

<u>def</u> Union of events, $E \cup F$

The event containing all outcomes in $E \circ F$.

$$E \cup F = \{1,2,3\}$$

Experiment:

Die roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

Let
$$E = \{1, 2\}$$
, and $F = \{2, 3\}$

<u>def</u> Intersection of events, $E \cap F$

The event containing all outcomes in E and F.

def Mutually exclusive events F and G means that $F \cap G = \emptyset$

$$E \cap F = EF = \{2\}$$

Experiment:

Die roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

Let $E = \{1, 2\}$, and $F = \{2, 3\}$

def Complement of event E, E^C

The event containing all outcomes in that are \underline{not} in E.

$$E^{C} = \{3, 4, 5, 6\}$$

Three Axioms of Probability

Definition of probability: $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$

 $0 \le P(E) \le 1$ Axiom 1:

Axiom 2: P(S) = 1

Axiom 3: If E and F are mutually exclusive $(E \cap F = \emptyset)$, then $P(E \cup F) = P(E) + P(F)$

Axiom 3 is the (analytically) most useful axiom

Axiom 3:

If E and F are mutually exclusive—that is, if
$$E \cap F = \emptyset$$
—then $P(E \cup F) = P(E) + P(F)$

More generally, for any sequence of mutually exclusive events E_1, E_2, \dots :

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

just like the Sum Rule of Counting, but for probabilities

Equally Likely Outcomes

Equally Likely Outcomes

Some sample spaces have equally likely outcomes.

- Flipping one coin: S = {Head, Tails}
- Flipping two coins: $S = \{(H, H), (H, T), (T, H), (T, T)\}$
- Roll of 6-sided die: $S = \{1, 2, 3, 4, 5, 6\}$ If we have equally likely outcomes, then P(Each outcome)

Therefore
$$P(E) = \frac{\text{\# outcomes in E}}{\text{\# outcomes in S}} = \frac{|E|}{|S|}$$
 (by Axiom 3)

Roll two dice

E =

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

Roll two 6-sided fair dice. What is P(sum = 7)?

$$S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \}$$

Target revisited

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

Let E = the set of outcomes where you hit the target.

Screen size = 800×800

Radius of target: 200

The dart is equally likely to land anywhere on the screen. What is P(E), the probability of hitting the target?

$$|S| = 800^2$$
 $|E| \approx \pi \cdot 200^2$

$$P(E) = \frac{|E|}{|S|} \approx \frac{\pi \cdot 200^2}{800^2} \approx 0.1963$$

Cats and sharks (note: stuffed animals)

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

4 cats and 3 sharks in a bag. 3 drawn. What is P(1 cat and 2 sharks drawn)?

Question: Do indistinct objects give you an equally likely sample space?

(No)

Make indistinct items distinct to get equally likely outcomes.

A.
$$\frac{3}{7}$$

B.
$$\frac{1}{4} \cdot \frac{2}{3}$$

c.
$$\frac{4}{7} + 2 \cdot \frac{3}{6}$$

D.
$$\frac{12}{35}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Cats and sharks (ordered solution)

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

4 cats and 3 sharks in a bag. 3 drawn. What is P(1 cat and 2 sharks drawn)?

Make indistinct items distinct to get equally likely outcomes.

Define

- $\cdot S = \text{Pick 3 distinct}$ items
- E = 1 distinct cat, 2 distinct sharks

Cats and sharks (unordered solution)

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

4 cats and 3 sharks in a bag. 3 drawn. What is P(1 cat and 2 sharks drawn)?

Make indistinct items distinct to get equally likely outcomes.

Define

- $\cdot S = \text{Pick 3 distinct}$ items
- E = 1 distinct cat, 2 distinct sharks

Equally likely outcomes:

$$P(E) = \frac{|E|}{|S|}$$

Combinatorics

Probability

Counting? Probability? Distinctness?

We choose 3 books from a set of

4 distinct (distinguishable) and 2 indistinct (indistinguishable) books. Each set of 3 books is equally likely.

Let event E = our choice excludes one or both indistinct books.

1. How many distinct outcomes are in *E*?

2. What is P(E)?

Poker Straights and Computer Chips

- Consider equally likely 5-card poker hands.
 - Define "poker straight" as 5 consecutive rank cards of any suit
 - What is P(poker straight)?

- What is an example of an equally likely outcome?
- Should objects be ordered or unordered?

- 2. Computer chips: n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing.
 - What is P(defective chip is in k selected chips?)

1. Any Poker Straight

Consider equally likely 5-card poker hands.

"straight" is 5 consecutive rank cards of any suit

What is P(Poker straight)?

Define

- *S* (unordered)
- E (unordered, consistent with S)

Compute P(Poker straight) =

2. Chip defect detection

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing.

What is P(defective chip is in k selected chips?)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Define

- *S* (unordered)
- E (unordered, consistent with S)

Compute
$$P(E) =$$

2. Chip defect detection, solution #2

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing. What is P(defective chip is in k selected chips?)

Redefine experiment

- 1. Choose k indistinct chips (1 way)
- 2. Throw a dart and make one defective

Define

- *S* (unordered)
- E (unordered, consistent with S)

Corollaries of Probability

3 Corollaries of Axioms of Probability

 $P(E^C) = 1 - P(E)$ **Corollary 1:**

If $E \subseteq F$, then $P(E) \leq P(F)$ **Corollary 2:**

Corollary 3: $P(E \cup F) = P(E) + P(F) - P(EF)$

(Inclusion-Exclusion Principle for Probability)

Selecting Programmers

- P(student programs in Python) = 0.28
- P(student programs in C++) = 0.07
- P(student programs in Python and C++) = 0.05.

What is P(student does not program in (Python or C++))?

1. Define events & state goal

2. Identify known probabilities

3. Solve

Inclusion-Exclusion Principle (Corollary 3)

Corollary 3:

$$P(E \cup F) = P(E) + P(F) - P(EF)$$

General form:

$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{r=1}^{n} (-1)^{(r+1)} \sum_{i_1 < \dots < i_r} P\left(\bigcap_{j=1}^{r} E_{i_j}\right)$$

$$P(E \cup F \cup G) =$$

$$r = 1$$
: $P(E) + P(F) + P(G)$

r = 2:
$$-P(E \cap F) - P(E \cap G) - P(F \cap G)$$

$$r = 3$$
: $+ P(E \cap F \cap G)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Axiom 3, Mutually exclusive events

Corollary 3, Inclusion-Exclusion Principle

The challenge of probability is in defining events. Some event probabilities are easier to compute than others.

SERENDIPITY

the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

- The population of Stanford is n = 17,000 people.
- You are friends with r = 100 people.
- Walk into a room, see k = 223 random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see someone you know in the room?

http://web.stanford.edu/class/cs109/demos/serendipity.html

- The population of Stanford is n = 17,000 people.
- You are friends with r = 100 people.
- Walk into a room, see k = 223 random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see at least one friend in the room?

Define

- *S* (unordered)
- E: > 1 friend in the room

What strategy would you use?

- A. P(exactly 1) + P(exactly 2) $P(\text{exactly 3}) + \cdots$
- B. 1 P(see no friends)

- The population of Stanford is n = 17,000 people.
- You are friends with r = 100 people.
- Walk into a room, see k = 223 random people.
- Assume each group of k Stanford people is equally likely to be in the room.

What is the probability that you see at least one friend in the room?

Define

- *S* (unordered)
- $E: \geq 1$ friend in the room

It is often much easier to compute $P(E^c)$.

The Birthday Paradox Problem

What is the probability that in a set of *n* people, <u>at least one</u> pair of them share the same birthday?

For you to think about (and discuss in your first section)

Card Flipping

In a 52-card deck, cards are flipped one at a time. After the first ace (of any suit) appears, consider the next card.

Is P(next card = Ace Spades) < P(next card = 2 Clubs)?

Card Flipping

In a 52-card deck, cards are flipped one at a time.

After the first ace (of any suit) appears, consider the next card.

Is P(next card = Ace Spades) < P(next card = 2 Clubs)?

Sample space S = 52 in-order cards (shuffle deck)

Event

 E_{AS} , next card is Ace Spades

- 1. Take out Ace of Spades.
- Shuffle leftover 51 cards.
- 3. Add Ace Spades after first ace.

$$|E_{AS}| = 51! \cdot 1$$

 E_{2C} , next card is 2 Clubs

- 1. Take out 2 Clubs.
- 2. Shuffle leftover 51 cards.
- 3. Add 2 Clubs after first ace.

$$|E_{2C}| = 51! \cdot 1$$

$$P(E_{AS}) = P(E_{2C})$$

Stanford University