04: Conditional
 Probability and Bayes
 Jerry Cain
 April 8 ${ }^{\text {th }}, 2024$

Lecture Discussion on Ed

Conditional Probability

Dice, our misunderstood friends

Roll two, fair 6-sided dice, yielding values D_{1} and D_{2}.

Let E be event: $D_{1}+D_{2}=4$.
$\left|D_{1}\right|=6$
What is $P(E) ? \quad\left|D_{2}\right|=6$

$$
|s|=\left|D_{1}\right|\left|D_{2}\right|=36
$$

$|S|=36$
$E=\{(1,3),(2,2),(3,1)\}$
$P(E)=3 / 36=1 / 12$

Let F be event: $D_{1}=2$.

What is $P(E$, knowing F already observed $)$?

$$
\begin{aligned}
& F=\{(2,1),(2,2),(2,3) \\
& (2,4),(2,5),(2,6)\},|F|=6 \\
& E=\{(2,2)\} \text { when inly options are these } \\
& \text { in } F .
\end{aligned}
$$

Conditional Probability

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F .

Written as:	$P(E \mid F)$
Means:	"P(E, knowing F already observ
Sample space \rightarrow	all possible outcomes in F
Event \rightarrow	all possible outcomes in $E \cap F$

Conditional Probability, equally likely outcomes

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F .

$$
\begin{array}{ll}
|E|=8 & |S|=50 \\
|F|=14 & |E \cap F|=3
\end{array}
$$

With equally likely outcomes:

$$
P(E \mid F)=\frac{\# \text { of outcomes in E consistent with } \mathrm{F}}{\# \text { of outcomes in } S \text { consistent with } \mathrm{F}}=\frac{|E \cap F|}{|S \cap F|}=\frac{|E \cap F|}{|F|}
$$

$$
P(E \mid F)=\frac{|E F|}{|F|}
$$

$$
\begin{aligned}
& P(E)=\frac{8}{50} \approx 0.16 \\
& P(E \mid F)=\frac{3}{14} \approx 0.21
\end{aligned}
$$

24 emails are sent, 6 each to 4 users.

- 10 of the 24 emails are spam. Si other 14 av legit emails distinct, but that
- All possible outcomes are equally likely. under doesn't matter.

Let $E=$ user 1 receives 3 spam emails.
What is $P(E)$?

$$
\begin{aligned}
& E=\binom{10}{3}\binom{14}{3} \\
& S=\binom{24}{6}
\end{aligned}
$$

Let $F=$ user 2 receives 6 spam emails.
What is $P(E \mid F)$?
knowing that F has happened, only 4 spam emails ak available to used (, but all 14 legitimate enrol as still amiable.

Let $G=$ user 3 receives 5 spam emails.
What is $P(G \mid F)$?
given that 6 of 10 spam email has alvede been directed to user 2 , it's impossible for user 3 to receive mine than 4 spam.

Slicing up the spam

$$
P(E \mid F)=\frac{|E F|}{|F|} \quad \begin{aligned}
& \text { Equally likely } \\
& \text { outcomes }
\end{aligned}
$$

24 emails are sent, 6 each to 4 users.

- 10 of the 24 emails are spam.
- All possible outcomes are equally likely.

Let $E=$ user 1 receives 3 spam emails.
What is $P(E)$?

$$
\begin{aligned}
P(E) & =\frac{\binom{10}{3}\binom{14}{3}}{\binom{24}{6}} \\
& \approx 0.3245
\end{aligned}
$$

Let $\begin{aligned} F= & \text { user } 2 \text { receives } \\ & 6 \text { spam emails. }\end{aligned}$
What is $P(E \mid F)$?

$$
\begin{aligned}
& P(E \mid F)=\frac{\binom{4}{3}\binom{14}{3}}{\binom{18}{6}} \\
& \quad \approx 0.0784
\end{aligned}
$$

Let $G=$ user 3 receives 5 spam emails.
What is $P(G \mid F)$?

$$
\begin{aligned}
& P(G \mid F)=\frac{!}{\binom{4}{5}\binom{14}{1}} \\
&\binom{18}{6} \\
&=0
\end{aligned}
$$

No way to choose 5 spam from 4 remaining spam emails!

Stanford University 7

Conditional probability in general

General definition of conditional probability:

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

The Chain Rule (aka Product rule):

$$
P(E F)=P(F) P(E \mid F)
$$

NETFLIX

Netflix and Learn

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \quad \begin{aligned}
& \text { Definition of } \\
& \text { Cond. Probability }
\end{aligned}
$$

Let $E=$ a user watches Life is Beautiful.
What is $P(E)$?
\mathbf{X} Equally likely outcomes?

$$
\begin{aligned}
& S=\{\text { watch, not watch }\} \\
& E=\{\text { watch }\} \\
& P(E)=1 / 2 ?
\end{aligned}
$$

$$
\begin{aligned}
& \nabla P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \approx \frac{\# \text { people who have watched movie }}{\# \text { people on Netflix }} \\
& \quad=10,234,231 / 50,923,123 \approx 0.20
\end{aligned}
$$

Netflix and Learn

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \quad \begin{aligned}
& \text { Definition of } \\
& \text { Cond. Probability }
\end{aligned}
$$

Let E be the event that a user watches the given movie.

$P(E)=0.19$

$P(E)=0.32$

$P(E)=0.20$

$P(E)=0.09$
$P(E)=0.20$

Netflix and Learn

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \quad \begin{aligned}
& \text { Definition of } \\
& \text { Cond. Probability }
\end{aligned}
$$

Let $E=$ a user watches Life is Beautiful.
Let $F=$ a user watches Amelie.
What is the probability that a user watches Life is Beautiful, given they watched Amelie?

$$
\begin{aligned}
& P(E \mid F) \\
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{\frac{\text { \# people who have watched both }}{\text { \# people on Netflix }}}{\frac{\text { \# people who have watched Amelie }}{\text { \# people on Netflix }}} \\
&=\frac{\text { \# people who have watched both }}{\# \text { people who have watched Amelie }} \\
& \approx 0.42 \quad \text { the counts can be extracted } \\
& \text { from data set a al lab }
\end{aligned}
$$

Netflix and Learn

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \quad \begin{aligned}
& \text { Definition of } \\
& \text { Cond. Probability }
\end{aligned}
$$

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$P(E)=0.19$
$P(E \mid F)=0.14$

$P(E)=0.32$

$$
P(E \mid F)=0.35
$$

$$
P(E \mid F)=0.20
$$

$$
P(E \mid F)=0.72
$$

$$
P(E \mid F)=0.42
$$

Law of Total Probability

Today's tasks

$P(E F)$

Law of Total Probability

$P(E)$

Law of Total Probability

Thm Let F be an event where $P(F)>0$. For any event E, $P(E)=P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)$

Proof
Def. of complement

1. F, F^{C} are disjoint such that $F \cup F^{C}=\mathrm{S}$ (see diagram)
2. $P(E)=P(E F)+P\left(E F^{C}\right)$

Additivity axiom
4. $P(E)=P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)$

Chain rule (product rule)

Note: disjoint sets are, by definition, mutually exclusive events

General Law of Total Probability

 such that $F_{1} \cup F_{2} \cup \cdots \cup F_{n}=S$,you ned $F_{1} \cup F_{2} \cup F_{3} \cup \cdots \cup F_{n}=S$

$$
P(E)=\sum_{i=1}^{n} \underbrace{P\left(E \mid F_{i}\right) P\left(F_{i}\right)}_{P\left(E F_{i}\right)}
$$

$$
\begin{gathered}
F_{1} v t_{2} \text { need all } P\left(F_{1}\right) \\
\text { yaluesos } \\
\text { well. }
\end{gathered}
$$

$$
\text { assume that } n=5
$$

in this one exampl,

$$
E F_{1}=E F_{5}=\phi
$$

Finding $P(E)$ from $P(E \mid F) \quad P(E)=P(E \mid F) P(F)+P\left(E| |^{c}\right) P\left(F^{c}\right) \quad$ Probability

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6 . What is P (winning)?

Finding $P(E)$ from $P(E \mid F)$

$$
P(E)=P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{c}\right) \text { Law of Total } \begin{aligned}
& \text { Probability }
\end{aligned}
$$

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P (winning)?

1. Define events \& state goal

Let: $\quad E$: win, F : flip heads Want: P (win)

$$
=P(E)
$$

2. Identify known
3. Solve probabilities

$$
\begin{array}{llr}
P(\operatorname{win} \mid \mathrm{H})=P(E \mid F)=1 / 6 & P(E)=(1 / 6)(1 / 2) \\
P(\mathrm{H}) & =P(F)=1 / 2 & +(0)(1 / 2) \\
P(\operatorname{win} \mid \mathrm{T}) & =P\left(E \mid F^{C}\right)=0 & \\
P(\mathrm{~T}) & =P\left(F^{C}\right)=1-1 / 2 & =\frac{1}{12} \approx 0.083
\end{array}
$$

Bayes' Theorem I

Today's tasks

Rev. Thomas Bayes (~1701-1761): British mathematician and Presbyterian minister

Law of Total Probability

$P(E F)$

Chain rule (Product rule)

Definition of conditional probability

$P(E \mid F)$

Bayes'
Theorem
$P(F \mid E)$

Detecting spam email

[^0]We can easily calculate how many existing spam emails contain "Dear":

$$
P(E \mid F)=P\left(\begin{array}{l|l}
\text { "Dear" } & \begin{array}{c}
\text { Spam } \\
\text { email }
\end{array}
\end{array}\right)
$$

But what is the probability that a mystery email containing "Dear" is spam?

$$
P(F \mid E)=P\left(\left.\begin{array}{c}
\text { Spam } \\
\text { email }
\end{array} \right\rvert\, \text { "Dear" }\right)
$$

Bayes' Theorem

Thm For any events E and F where $P(E)>0$ and $P(F)>0$,

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Proof

$$
\begin{aligned}
& \text { 1.) } P(F \mid E)=\frac{P(F E)}{P(E)} \\
& \text { 2.) } \quad \frac{P(F E)}{P(E)}=\frac{P(E \mid F) P(E)}{P(E)}
\end{aligned}
$$

Expanded form:
2 steps!

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)}
$$

1 more step! den minator iejust $P(E)$ exparsece usib LOTP

Detecting spam email

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

- 60% of all email in 2016 is spam.
- 20% of spam has the word "Dear"

$$
\begin{aligned}
& P(F)=0.6 \\
& P(E \mid F)=0.2 \\
& P\left(E \mid F^{C}\right)=0.01
\end{aligned}
$$

You get an email with the word "Dear" in it.
What is the probability that the email is spam?

1. Define events \& state goal

Let: $\quad E$: "Dear", F: spam
Want: P (spam|"Dear")

$$
=P(F \mid E)
$$

2. Identify known
3. Solve probabilities

$$
\begin{aligned}
& P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{\prime}\right) P\left(F^{c}\right)} \\
& =\frac{(0.2)(0.6)}{(0.2)(0.6)+(0.01)(0.4)}=0,967
\end{aligned}
$$

Bayes' Theorem terminology

- 60\% of all email in 2016 is spam.
- 20% of spam has the word "Dear"

$$
P(F)
$$

$P(E \mid F)$

- 1\% of non-spam (aka ham) has the word "Dear"

You get an email with the word "Dear" in it. What is the probability that the email is spam? Want: $P(F \mid E)$

$$
\begin{gathered}
\text { posterior } \\
P(F \mid E)=
\end{gathered} \frac{\begin{array}{c}
\text { likelihood prior } \\
P(E \mid F) P(F) \\
P(E) \\
\text { normalization constant }
\end{array}}{\text { (F) }}
$$

Bayes' Theorem II

This class going forward

Last week

Equally likely events

Today and for most of this course Events not always equally likely

$$
\begin{gathered}
P(E=\text { Evidence } \mid F=\text { Fact) } \\
\text { (collected from data) } \\
\text { Bayes' } \\
P\left(F=\text { Fact } \left\lvert\, E=\begin{array}{c}
\text { (categorize } \\
\text { a new datapoint) }
\end{array}\right.\right)
\end{gathered}
$$

(counting, combinatorics)

Bayes' Theorem

$$
\begin{aligned}
& \text { posterior } \\
& P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
\end{aligned}
$$

Mathematically:

$$
P(E \mid F) \rightarrow P(F \mid E)
$$

Real-life application:
Given new evidence E, update belief of fact F Prior belief \rightarrow Posterior belief
$P(F) \rightarrow P(F \mid E)$

Zika, an autoimmune disease

A disease spread through mosquito bites. very rare cases. During pregnancy: may cause birth defects. Very serious news story in 2015/2016.

Taking tests: Confusion matrix

Taking tests: Confusion matrix

Zika Testing

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?
Why would you expect this number?

1. Define events
\& state goal
Let: $\quad E=$ you test positive
$F=$ you actually have the disease

Want:
P(disease | test+)
$=P(F \mid E)$

Zika Testing

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?
Why would you expect this number?

1. Define events \& state goal

Let: $\quad E=$ you test positive $F=$ you actually have the disease

Want:
P(disease | test+)
$=P(F \mid E)$
2. Identify known probabilities

$$
P(F)=0.005
$$

$$
P(E \mid F)=0.98
$$

$$
P(E \mid F()=0.01
$$

$$
(0.98)(0.005)
$$

$$
\begin{gathered}
P(F \mid E)=(0.98)(0.005)+(0.01)(0.995) \\
\simeq .330
\end{gathered}
$$

Bayes' Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?

Bayes' Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?

Interpret

Interpretation:
Of the people who test positive, how many actually have Zika?

People who test positive

People with Zika

Bayes' Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?

Interpret

Interpretation:
Of the people who test
People who test positive positive, how many actually have Zika?

conditioned on a positive test result

Update your beliefs with Bayes' Theorem

$E=$ you test positive for Zika
$F=$ you have the disease

Why it's still good to get tested $P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)}$ Bayes' Theorem

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

Let: $\quad E=$ you test positive $F=$ you actually have the disease
Let: $\quad E^{C}=$ you test negative

	F, disease +	F^{C}, disease -
E, Test +	True positive	False positive
	$P(E \mid F)=0.98$	$P\left(E \mid F^{C}\right)=0.01$

What is $P\left(F \mid E^{C}\right)$?

Why it's still good to get tested
 $$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

Let: $\quad E=$ you test positive $F=$ you actually have the disease
Let: $\quad E^{C}=$ you test negative

	F, disease +	F^{C}, disease -
E, Test +	True positive	False positive
	$P(E \mid F)=0.98$	$P\left(E \mid F^{C}\right)=0.01$

What is $P\left(F \mid E^{C}\right)$?

Why it's still good to get tested
 $$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

Let: $\quad E=$ you test positive $F=$ you actually have the disease
Let: $\quad E^{C}=$ you test negative for Zika with this test.

What is $P\left(F \mid E^{C}\right)$?

	F, disease +	F^{C}, disease -
E, Test +	True positive	False positive
	$P(E \mid F)=0.98$	$P\left(E \mid F^{C}\right)=0.01$
E^{C}, Test -	False negative	True negative
	$P\left(E^{C} \mid F\right)=0.02$	$P\left(E^{C} \mid F^{C}\right)=0.99$

$$
P\left(F \mid E^{C}\right)=\frac{P\left(E^{C} \mid F\right) P(F)}{P\left(E^{C} \mid F\right) P(F)+P\left(E^{C} \mid F^{C}\right) P\left(F^{C}\right)}=\frac{(0.02)(0,005)}{(0,02)(0.005)+(0.99)(0,995)} \approx 0,0001
$$

Why it's still good to get tested

$E=$ you test positive for Zika
$F=$ you actually have the disease
$E^{C}=$ you test negative for Zika

[^0]: INVOICE
 Geek SQUAD

 Invoice ID:-\#GS535741
 Dear Geek Squad Customer,
 Thank you for using Geek Squad Antivirus for the last one year. Your Geek SQUADAntivirus
 plan will expire today.
 We wanted to remind you that your plan will be auto-renewed Today for next one year. You will be We wanted to remind you that your plan will be auto-renewed Today for next one year. You will be
 billed from your saved account details for the annual amount of your Antivirus Plan.
 Payment Information
 PURCHASE DATE: 245 t JANUARY 2022
 INVOICE NO.: \#GST331
 PRODUCT NAME: Geek SQUAD Anivirn
 PRODUCT NAME: Geek SQUAD Antivirus
 BILING CYCLE: 2 Year
 PURCHASE TYPE:
 Total Price: $\$ 440.80$
 Note:-
 Having any queries with this invoico? Feel free to contact our support team at +18189214805
 If you want to continue taking our service and products and retain all your data and preferences, yo 11 you want to coninuu taking our sericee and products and retain aly your data a
 can easily renew or cancel the sevicesprofoducts by calling on +18189214805

 Regards,

