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CS109 April 25, 2024

Section 3: Named Random Variables

Before you leave lab, make sure you click here so that you’re marked as having attended. The CA
leading your discussion section can enter the password needed once you’ve submitted.

1 Gender Composition of Discussion Sections
A massive online Stanford class has sections with 10 students each. Each student in our population
has a 50% chance of identifying as female, 47% chance of identifying as male and 3% chance of
identifying as non-binary. Even though students are assigned randomly to sections, a few sections
end up having a very uneven distribution just by chance. You should assume that the population of
students is so large that the percentages of students who identify as male / female / non-binary are
unchanged, even if you select students without replacement.

a. Define a random variable for the number of people in a section who identify as male.

Let 𝑋 denote the number of people in a section who identify as male.

𝑋 ∼ Bin(𝑛 = 10, 𝑝 = 0.47)

b. What is the expectation and standard deviation of number of students who identify as male
in a single section?

𝐸 [𝑋] = 𝑛 · 𝑝 = 10 · 0.47 = 4.7
Std(𝑋) =

√︁
Var(𝑋) =

√︁
𝑛 · 𝑝 · (1 − 𝑝) =

√
10 · 0.47 · 0.53 ≈ 1.58

c. Write an expression for the exact probability that a section is skewed. We defined skewed to
be that the section has 0, 1, 9 or 10 people who identify as male.

Recall that 𝑝 = 0.47.

𝑃(skewed) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 9) + 𝑃(𝑋 = 10)

=

(
10
0

)
(1 − 𝑝)10 +

(
10
1

)
𝑝(1 − 𝑝)9 +

(
10
9

)
𝑝9(1 − 𝑝) +

(
10
10

)
𝑝10

≈ 0.024

$ python3

>>> import scipy.stats as st

https://web.stanford.edu/class/cs109/cgi-bin/lab3
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>>> import numpy as np

>>> st.binom(10, 0.47).pmf(np.array([0,1,9,10])).sum()

0.023715146414928143

d. The course has 1,200 sections. Approximate the probability that 30 or more sections will be
skewed.

The exact probability of number of skewed sections is 𝑆 ∼ Bin(𝑛 = 1200, 𝑝 = 0.024). To
simplify the math, we can approximate the number of skewed sections using a Poisson
approximation. Let 𝑌 be the Poisson approximation of 𝑆.

𝑌 ∼ Poi(𝜆 = 28.8) since 𝑛𝑝 = 1200 · 0.024 = 28.8.

𝑃(𝑌 ≥ 30) = 1 − 𝑃(𝑌 < 30)

= 1 −
29∑︁
𝑘=0

𝑃(𝑌 = 𝑘)

≈ 0.436

$ python3

>>> import scipy.stats as st

>>> import numpy as np

>>> lamb = 28.8

>>> 1 - st.poisson(lamb).pmf(range(0, 30)).sum()

0.43605869062536795

2 Better Evaluation of Eye Disease
When a patient has eye inflammation, eye doctors ”grade” the inflammation. When ”grading”
inflammation they randomly look at a single 1 millimeter by 1 millimeter square in the patient’s
eye and count how many ”cells” they see.

There is uncertainty in these counts. If the true average number of cells for a given patient’s eye is
6, the doctor could get a different count (say 4, or 5, or 7) just by chance. As of 2021, modern eye
medicine does not have a sense of uncertainty for their inflammation grades! In this problem we
are going to change that. At the same time we are going to learn about poisson distributions over
space.

a. Explain, as if teaching, why the number of cells observed in a 1x1 square is governed by
a poisson process. Make sure to explain how a binomial distribution could approximate the
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Figure 1: A 1x1mm sample used for inflammation grading. Inflammation is graded by counting
cells in a randomly chosen 1mm by 1mm square. This sample has 5 cells.

count of cells. Explain what 𝜆 means in this context. Note: for a given person’s eye, the
presence of a cell in a location is independent of the presence of a cell in another location.

We can approximate a distribution for the count by discretizing the square into a fixed
number of equal sized buckets. Each bucket either has a cell or not. Therefore, the count
of cells in the 1x1 square is a sum of Bernoulli random variables with equal 𝑝, and as
such can be modeled as a binomial random variable. This is an approximation because it
doesn’t allow for two cells in one bucket. Just like with time, if we make the size of each
bucket infinitely small, this limitation goes away and we converge on the true distribution
of counts. The binomial in the limit, i.e. a binomial as 𝑛 → ∞, is truly represented by a
Poisson random variable. In this context, 𝜆 represents the average number of cells per 1×1
sample. See Figure 2.

Figure 2: 𝑋 is counts of events in discrete buckets. In the limit, as 𝑛 (number of buckets) → ∞, 𝑋
becomes a Poisson.

b. For a given patient the true average rate of cells is 5 cells per 1x1 sample. What is the
probability that in a single 1x1 sample the doctor counts 4 cells?
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Let 𝑋 denote the number of cells in the 1x1 sample. We note that 𝑋 ∼ 𝑃𝑜𝑖(5). We want to
find 𝑃(𝑋 = 4).

𝑃(𝑋 = 4) = 54𝑒−5

4!
≈ 0.175

In addition to providing an expression above,
please compute a numeric answer: 0.175

3 Continuous Random Variables
Let 𝑋 be a continuous random variable with the following probability density function:

𝑓𝑋 (𝑥) =
{
𝑐(𝑒𝑥−1 + 𝑒−𝑥) if 0 ≤ 𝑥 ≤ 1
0 otherwise

a. Find the value of 𝑐 that makes 𝑓𝑋 a valid probability distribution.

We need
∫ ∞
−∞ 𝑓𝑋 (𝑥)𝑑𝑥 = 1 if this is to be a valid probability density function!∫ ∞

−∞
𝑓𝑋 (𝑥)𝑑𝑥 =

∫ 1

0
𝑐(𝑒𝑥−1 + 𝑒−𝑥)𝑑𝑥

1 = 𝑐
[
𝑒𝑥−1 − 𝑒−𝑥

]1
𝑥=0

1 = 𝑐(𝑒1−1 − 𝑒−1 − (𝑒0−1 − 𝑒−0))

𝑐 =
1

1 − 𝑒−1 − (𝑒−1 − 1)
=

1
2 − 2

𝑒

b. What is 𝑃(𝑋 < 0.75)? What is 𝑃(𝑋 < 𝑥)?

𝑃(𝑋 < 0.75) =
∫ 0.75

0
𝑐(𝑒𝑥−1 + 𝑒−𝑥)𝑑𝑥

= 𝑐
[
𝑒𝑥−1 − 𝑒−𝑥

]0.75
𝑥=0

= 𝑐

(
(𝑒0.75−1 − 𝑒−0.75) − (𝑒0−1 − 𝑒−0)

)

𝑃(𝑋 < 𝑥) =
∫ 𝑥

0
𝑐(𝑒𝑦−1 + 𝑒−𝑦)𝑑𝑦

= 𝑐
[
𝑒𝑦−1 − 𝑒−𝑦

]𝑥
𝑥=0

= 𝑐

(
(𝑒𝑥−1 − 𝑒−𝑥) − (𝑒0−1 − 𝑒−0)

)
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4 Website Visits
You have a website where only one visitor can be on the site at a time, but there is an infinite queue
of visitors, so that immediately after a visitor leaves, a new visitor will come onto the website. On
average, visitors leave your website after 5 minutes. Assume that the length of stay is exponentially
distributed. We will calculate what is the probability that a user stays more than 10 minutes.

a. Using the random variable 𝑋 defined as above, what is the probability that a user stays longer
than 10 mins? (i.e, 𝑋 > 10).

𝑃(𝑋 > 10) = 1 − 𝐹𝑋 (10) = 1 − (1 − 𝑒−10𝜆) = 𝑒−2 ≈ 0.1353

b. Using the random variable 𝑌 , defined as the number of users who leave your website over a
10-minute interval, what is the probability that a user stays longer than 10 mins?

If this problem doesn’t convince you that the Poisson and Exponential RVs are coupled,
then I’m not sure what will! As defined above, 𝑋 ∼ Exp(𝜆 = 1

5 ).

Alternatively, we have that 𝑌 is the number of users leaving on the website in the
next 10 minutes. The average number of users leaving is 2 users per 10 minutes.
𝑌 ∼ Poi(𝜆 = 2).

𝑃(𝑌 = 0) = 20𝑒−2

0!
= 𝑒−2 ≈ 0.1353
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