*

17: Continuous Joint Distributions II

Jerry Cain
May $8^{\text {th }}, 2024$

Lecture Discussion on Ed

Convolution: Sum of independent Uniform RVs

Today's lecture

Take what we've seen with discrete joint distributions...
...and generalize to continuous joint distributions.
For the most part, this isn't too bad. Examples:

But some concepts, while mathematically accessible given what we've learned, are difficult to implement in practice.
We'll focus on some of these today.

Goal of CS109 continuous joint distributions unit: build mathematical maturity

Dance, Dance, Convolution

Recall that for independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \quad \begin{aligned}
& \text { the convolution } \\
& \text { of } p_{X} \text { and } p_{Y}
\end{aligned}
$$

Independent X, Y

Dance, Dance, Convolution

Recall that for independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \quad \begin{aligned}
& \text { the convolution } \\
& \text { of } p_{X} \text { and } p_{Y}
\end{aligned}
$$

For independent continuous random variables X and Y :

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x
$$

the convolution of f_{X} and f_{Y}

Sum of independent Uniforms

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x
$$

Sum of independent Uniforms

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x
$$

$$
f_{X}(x)=\left\{\begin{array}{lr}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& 1-\frac{f_{Y}(\alpha-x)}{?} \\
& \begin{aligned}
f_{Y}(\alpha-x) & =\left\{\begin{array}{cc}
1 & \text { if } 0 \leq \alpha-x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned} \\
& \text { Stanford University } 7
\end{aligned}
$$

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

1. $\alpha \leq 0$

$$
\begin{align*}
f_{X}(x) & =\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
f_{Y}(\alpha-x) & =\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \\
0 & \text { otherwise }
\end{array}\right. \tag{0}
\end{align*}
$$

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

$$
\begin{align*}
f_{X}(x) & =\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
f_{Y}(\alpha-x) & =\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \\
0 & \text { otherwise }
\end{array}\right. \tag{0}
\end{align*}
$$

1. $\alpha \leq 0$
2. $\alpha=1 / 2 \quad 1 / 2$

Integral = area under the curve This curve $=$ product of 2 functions of x

Sum of independent Uniforms

$$
\begin{aligned}
& \quad X \text { and } Y \\
& \text { independent } f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x \\
& + \text { continuous }
\end{aligned}
$$

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
f_{Y}(\alpha-x) & =\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

2. $\alpha=1 / 2 \quad 1 / 2$
3. $\alpha=1$
4. $\alpha=3 / 2$
5. $\quad \alpha \geq 2$

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
f_{Y}(\alpha-x) & =\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

2. $\alpha=1 / 2$

1/2
3. $\alpha=1$

1

4. $\alpha=3 / 2$
5. $\alpha \geq 2$

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

1. $\alpha \leq 0$

$$
f_{X}(x)=\left\{\begin{array}{lr}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
f_{Y}(\alpha-x)=\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \tag{0}\\
0 & \text { otherwise }
\end{array}\right.
$$

2. $\alpha=1 / 2$

1/2
3. $\alpha=1$ 1

4. $\alpha=3 / 2 \quad 1 / 2$
5. $\alpha \geq 2$

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs. What is the distribution of $X+Y, f_{X+Y}(\alpha)$?

1. $\alpha \leq 0$

$$
f_{X}(x)=\left\{\begin{array}{lr}
1 & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
f_{Y}(\alpha-x)=\left\{\begin{array}{cc}
1 & \text { if } \alpha-1 \leq x \leq \alpha \tag{0}\\
0 & \text { otherwise }
\end{array}\right.
$$

2. $\alpha=1 / 2$
$1 / 2$
3. $\alpha=1$

1

ni ovenlap
4. $\alpha=3 / 2 \quad 1 / 2$
5. $\alpha \geq 2$

0

Sum of independent Uniforms

$\quad X$ and Y
independent $f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x$

+ continuous

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent RVs.
What is the distribution of $X+Y, f_{X+Y}(\alpha)$?
(1.) $\alpha \leq 0$$\alpha=1 / 2$
1/2
(3.) $\alpha=1$

1
$\alpha=3 / 2 \quad 1 / 2$
(5.) $\alpha \geq 2$

$$
f_{X+Y}(\alpha)=\left\{\begin{array}{cl}
\alpha & 0 \leq \alpha \leq 1 \\
2-\alpha & 1 \leq \alpha \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Dance, Dance, Convolution Extreme

Ratio of PDFs

Relative probabilities of continuous random variables

Let $X=$ time to finish Problem Set 4 .
Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$\frac{P(X=10)}{P(X=5)}=$
A. $0 / 0=$ undefined
B. 2
C. $\frac{f(10)}{f(5)}$
D. $\frac{f(2)}{f(1)}$

Relative probabilities of continuous random variables

Let $X=$ time to finish problem set 4 .
Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$\frac{P(X=10)}{P(X=5)}=$
A. $0 / 0=$ undefined
B. 2
(C. $\frac{f(10)}{f(5)}$
D. $\frac{f(2)}{f(1)}$

Relative probabilities of continuous random variables

Let $X=$ time to finish problem set 4 .
Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$\begin{aligned} \frac{P(X=10)}{P(X=5)}=\frac{f(10)}{f(5)} \longrightarrow & P(X=a)=P\left(a-\frac{\varepsilon}{2} \leq X \leq a+\frac{\varepsilon}{2}\right)=\int_{a-\frac{\varepsilon}{2}}^{a+\frac{\varepsilon}{2}} f(x) d x \approx \varepsilon f(a) \\ & \text { Therefore } \frac{P(X=a)}{P(X=b)}=\frac{\varepsilon f(a)}{\varepsilon f(b)}=\frac{f(a)}{f(b)}\end{aligned}$

$$
=\frac{\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(10-\mu)^{2}}{2 \sigma^{2}}}}{\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(5-\mu)^{2}}{2 \sigma^{2}}}}=\frac{e^{-\frac{(10-10)^{2}}{2 \cdot 2}}}{e^{-\frac{(5-10)^{2}}{2 \cdot 2}}}=\frac{e^{0}}{e^{-\frac{25}{4}}}=518
$$

Continuous conditional distributions

Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad \text { where } f_{Y}(y)>0
$$

Intuition: $P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \Longleftrightarrow f_{X \mid Y}(x \mid y) \varepsilon_{X}=\frac{f_{X, Y}(x, y) \varepsilon_{X} \varepsilon_{Y}}{f_{Y}(y) \varepsilon_{Y}}$
Note that conditional PDF $f_{X \mid Y}$ is a "true" density:

$$
\int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y)}{f_{Y}(y)} d x=\frac{f_{Y}(y)}{f_{Y}(y)}=1
$$

Why sums of random variables?

Sometimes modeling and understanding a complex RV, X, is difficult. But if we can decompose X into the sum of simpler, independent RVs,

- We can compute distributions on X.
- We can better understand how X changes as its constituent RVs change.

What can we model with a triangular PDF?

Sum of uniforms!

We're covering the reverse direction for now; the forward direction will come on Friday

Everything* in probability is a sum or a product (or both)

*except conditional probability (a ratio)

Sum of values that can be considered separately (possibly weighted by prob. of happening)

$$
\begin{aligned}
& E[X]=\sum_{x} \underbrace{x p(x)}_{\text {weight }} \quad E[X \mid Y=y]=\int_{-\infty}^{\infty} x \underbrace{x f_{X \mid Y}(x \mid y)}_{\text {weight }} d x \\
& P(E)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) \underbrace{P\left(F_{i}\right)}_{\text {weight }} \\
& \text { Law of Total Probability }
\end{aligned} \quad P(E)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

$$
P(E \cap F \cap G)=P(E) P(F \mid E) P(G \mid E F)
$$

Product of values that can each be considered in sequence

Chain Rule
$f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$
Independent cont. RVs

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$

Sum of indep. discrete RVs
(convolution)

Conditional probability and Bayes' Theorem

Definition

$$
P(F \mid E)=\frac{P(E \cap F)}{P(E)}
$$

Scaling to the correct sample space

Independence
E, F independent

Sample space doesn't need to be scaled

Bayes' Theorem

Multiple Bayes' Theorems

with
events
with discrete RVs

$$
\begin{gathered}
P(F \mid E)=\frac{P(F) P(E \mid F)}{P(E)} \\
p_{Y \mid X}(y \mid x)=\frac{p_{Y}(y) p_{X \mid Y}(x \mid y)}{p_{X}(x)}
\end{gathered}
$$

You are given
this value...
with
continuous RVs

$$
f_{Y \mid X}(y \mid x)=\frac{f_{Y}(y) f_{X \mid Y}(x \mid y)}{\underbrace{f_{X}(x)}_{\text {-so this is ji sust a scalar }}}
$$

same idea!

Stanford University

Workout time

Tracking in 2-D space

Tracking in 2-D space

- Before measuring, we have some prior belief about the 2-D location of an object, (X, Y).
- We observe some noisy measurement $D=4$, the Euclidean distance of the object to a satellite.

- After the measurement, what is our updated (posterior) belief of the 2D location of the object?

Tracking in 2-D space

- You hold some prior beliefs about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- How do you update your beliefs about the 2-D location of the object after that noisy measurement?

Recall Bayes

$$
\begin{array}{cc}
\begin{array}{c}
\text { posterior } \\
\text { belief }
\end{array} & \begin{array}{c}
\text { likelihood } \\
\text { (of evidence) }
\end{array} \\
f_{X, Y \mid D}(x, y \mid d)=\frac{\text { prior }}{\text { belief }}
\end{array}
$$ terminology:

1. Define prior

$$
f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}
$$

You have a prior belief about the 2-D location of an object, (X, Y).

Let $(X, Y)=$ object's $2-\mathrm{D}$ location, assuming satellite is at $(0,0)$

Suppose the prior distribution is a symmetric bivariate normal distribution:
this means that both margivals are normals.

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi 2^{2}} e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{2\left(2^{2}\right)}}=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}
$$

normalizing constant
wedithis becaus, as

2. Define likelihood

$f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}$

You observe a noisy distance measurement, $D=4$.
If you knew your actual location to be (x, y), you could argue Just how likely a measurement of $D=4$ actually is.

Let $D=$ measured radial distance from the satellite, where actual (x, y) is known!

- D is still noisy! Suppose noise is standard normal.
- On average, D is your true Euclidean distance: $\sqrt{x^{2}+y^{2}}$

2. Define likelihood

$$
f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}
$$

You observe a noisy distance measurement, $D=4$.
If you knew your actual location to be (x, y), you could argue Just how likely a measurement of $D=4$ actually is.

Let $D=$ measured radial distance from the satellite, where actual (x, y) is known!

- D is still noisy! Suppose noise is standard normal.
- On average, D is your true Euclidean distance: $\sqrt{x^{2}+y^{2}}$

$$
D \mid X, Y \sim N\left(\mu=\quad \text { (A) } \quad, \sigma^{2}={ }^{(B)}\right)
$$

$f_{D \mid X, Y}(D=d \mid X=x, Y=y)=\frac{1}{(c)} e^{-(D)}$

Stanford University 32

2. Define likelihood

$$
f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}
$$

You observe a noisy distance measurement, $D=4$.
If you knew your actual location to be (x, y), you could argue Just how likely a measurement of $D=4$ actually is.

Let $D=$ measured radial distance from the satellite, where actual (x, y) is known!

- D is still noisy! Suppose noise is standard normal.
- On average, D is your true Euclidean distance: $\sqrt{x^{2}+y^{2}}$

$D \mid X, Y \sim N\left(\mu=\sqrt{x^{2}+y^{2}}, \sigma^{2}=1\right)$
$f_{D \mid X, Y}(D=d \mid X=x, Y=y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(d-\sqrt{x^{2}+y^{2}}\right)^{2}}=\grave{ } K_{2} \cdot e^{-\frac{1}{2}\left(d-\sqrt{x^{2}+y^{2}}\right)^{2}}$

3. Compute posterior

$$
f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}
$$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?
Compute:
Posterior belief

$$
f_{X, Y \mid D}(x, y \mid 4)=f_{X, Y \mid D}(X=x, Y=y \mid D=4)
$$

3. Compute posterior

 $f_{X, Y \mid D}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}$What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?
Compute:
Posterior belief

$$
f_{X, Y \mid D}(x, y \mid 4)=f_{X, Y \mid D}(X=x, Y=y \mid D=4)
$$

Know:

$$
\begin{aligned}
& \text { Prior } \\
& \text { belief } f_{X, Y}(x, y)=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}} \quad \begin{array}{r}
\text { Observation } \\
\text { likelihood }
\end{array} f_{D \mid X, Y}(d \mid x, y)=K_{2} \cdot e^{-\frac{1}{2}\left(d-\sqrt{x^{2}+y^{2}}\right)^{2}}
\end{aligned}
$$

Tips

- Use Bayes' Theorem!
- $f_{D}(4)$ is just a scaling constant. Why?
- How can we approximate the final scaling constant with a computer?

Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?
likelihood of $D=4$
prior belief
$\begin{aligned} f_{X, Y \mid D}(X=x, Y=y \mid D=4) & =\frac{f_{D \mid X, Y}(D=4 \mid X=x, Y=y) f_{X, Y}(x, y)}{f(D=4)} \text { Bayes' } \\ & =\frac{K_{2} \cdot e^{-\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}} \cdot K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}}{f(D=4)} \\ \begin{array}{c}\text { Key: Once we know the } \\ \text { part dependent on } x, y, \text { we } \\ \text { can computationally } \\ \text { approximate } K_{4} \text { so that } \\ f_{X, Y \mid D} \text { is a valid PDF. }\end{array} & =\frac{K_{3} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}}{f(D=4)} \\ & =K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}\end{aligned}$

Tracking in 2-D space

$$
\begin{gathered}
(3,3) \text { is at } 4.2 \text { units from } \\
\text { ongin }
\end{gathered}
$$

With this continuous version of Bayes' theorem, we can explore new domains.

- Before measuring, you hold some prior beliefs about the 2-D location of an object, (X, Y).

- You observe a noisy distance measurement, $D=4$.
- After the measurement, do you update your beliefs about the 2-D location of the object after that noisy measurement.

Tracking in 2-D space: Posterior belief

Prior belief

3-D view

Posterior belief

3-D view

$f_{X, Y \mid D}(x, y \mid 4)=$
$K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}$

How'd you compute that K_{4} ?

To be a valid conditional PDF, $\quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y \mid D}(x, y \mid 4) d x d y=1$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]} d x d y=1$

$$
\frac{1}{K_{4}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]} d x d y \quad \text { (pull out } K_{4}, \text { divide) }
$$

Approximate:

$$
\frac{1}{K_{4}} \approx \sum_{y} \sum_{x} e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]} \Delta x \Delta y
$$

Use a computer!

