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17: Continuous Joint
Distributions II

Jerry Cain
May 8th 2024

Lecture Discussion on Ed



https://edstem.org/us/courses/57742/discussion/4924490

Convolution:
Sum of
independent

Uniform RVs




Today’s lecture

Take what we’ve seen with discrete joint distributions...

...and generalize to continuous joint distributions.
Mm‘«ﬁéé‘ _
For the most part! this _ Marg_inal px(a) = ZPX,Y(CLY) fx(@) =f fxy(a,y)dy
isn’t too bad. Examples: distributions y -
Independent RVs  pxy(x,y) = px(poy (V) fxy () = fx () fyr )
e ST, O ) = FL)R(Y)
But some concepts, while mathematically accessible given what we've
learned, are difficult to implement in practice.

We’ll focus on some of these today.

Goal of CS109 continuous joint
distributions unit: build
mathematical maturity
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Review

Dance, Dance, Convolution

Recall that for independent discrete random variables X and Y
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the convolution
of py and py

kK)P(Y =n—k)

P(X+Y=n)=ZP(X

2 3 45 6 7 8 9 101112

Independent X, Y
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X+Y=n
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Dance, Dance, Convolution

For independent continuous random variables X and Y

fx+y (@) =f_ fx () fy(a —x)dx

fY(YJ

fX(X]

X

Independent X, Y
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Sum of independent Uniforms

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. o
What is the distribution of X + Y, fiy (a)? Frry () = f £ OO F (o — x)dx

Isn’t this just
one??

fx () fr (%)

- X

Not so fast...
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Sum of independent Uniforms

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs.
What is the distribution of X + Y, fy,y(a)?

fx(x)
1
0 1
11 ifox<1
fx(x) = {O otherwise

fear(@) = f F (O fy (@ — x)dx

. fr(a —x)
?
X ),) CM\W\'VM’:(’DL
£ eceytarng
(1 ifo < < Them,
a—X
- = _ _ ) Ade by -
fr(@=x) 0 otherwise ) Ade by -|
) a IS a constant
_J1 ifa—-1<x<a [intheintegral
0 otherwise w.r.t. x.
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XandY o
Sum of independent Uniforms independent fy.(a) = f_mfx@fﬂa ~x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy.y(@)? 0 otherwise
frla—x) = 1 fa—-1<x<a
1. a<0 0 Y —lo otherwise
fx (x)

r————7 ! C— filla—x)

I I

I 1 X

0 1
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XandY o
Sum of independent Uniforms independent fy.(a) = f_mfx@fﬂa ~x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
fola —x) = 1 ifa—1<x=<a
0 Y 1o otherwise
2. a=1/2
/ 1/2 fx(x)

r — | - — fy(a—x)

I I

] 1 X

oL"'\"_"--kL O oé:.lL 1

Integral = area under the curve
This curve = product of 2 functions of x
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XandY o
Sum Of lndependent Unlforms independent fy,y(a) = f_ fx () fy(a — x) dx

+ continuous

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
fola —x) = 1 fa—1<x<a
0 Y 1o otherwise
1/2
3. a=1
4. a=3/2
O]
5 a=2 s
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XandY o
Sum of independent Uniforms independent fy.(a) = f_mfx@fﬂa ~x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
fola —x) = 1 ifa—1<x=<a
0 Y 1o otherwise
1/2 fx(x)
- — fyl@a—x)
3. a=1 1
X
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XandY o
Sum Of lndependent Unlforms independent fy,y(a) = f_ fx () fy(a — x) dx

+ continuous

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
fola —x) = 1 fa—-1<x<a
0 Y 0 otherwise
1/2 fx(x)
1 | —7 -— frla=x
1 | I
| 1 x
0 ot-\=2 1 o) =%/

4. a=3/2 1/2
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XandY o
Sum Of lndependent Unlforms independent fy,y(a) = f_ fx () fy(a — x) dx

+ continuous

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. £() = {1 fo<x<1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
fola —x) = 1 ifa—1<x=<a
0 Y 1o otherwise
fX(x)
1/2 - — fy(@a—x)
1— —
[ ]
1 I I
| 1 x
0 10 x~1=\4 o=y
A IV VIVY,
1/2
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XandY o
Sum of independent Uniforms independent fy.(a) = f_mfx@fﬂa ~x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs.
What is the distribution of X + Y, fy,y(a)?

@aSO 0

S
2) a=1/2 1/2 2 1/2 -
3 ﬁﬁ‘/
0 i i i
1/2 3/2
Ba=1 1 oz ¥

05=3/2 1/2 a 0<a<l

fxiv(@) =<2—a 1<a<?

0 otherwise
@ a =2 0
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Ratio of PDFs




Relative probabilities of continuous random variables

Let X = time to finish Problem Set 4.
Suppose X~N (10, 2). R
How much more likely are you to =
complete in 10 hours than 5 hours? I
5 10 X
PIX = 10) A. 0/0 ndefined
= . = U |
P(X=5
( ) B. 2
f(10)
s
2

A=
&
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Relative probabilities of continuous random variables

Let X = time to finish problem set 4.
Suppose X~N (10, 2). R
How much more likely are you to =
complete in 10 hours than 5 hours? I
5 10 X

PX=10) 0/0 = undefined
PX=5) 2/ = undefine

f(10)

f(5)

f(2)

f(

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 18



Relative probabilities of continuous random variables

Let X = time to finish problem set 4.
Suppose X~N (10, 2). R
How much more likely are you to =
complete in 10 hours than 5 hours? I
5 10 X
P(X = 10) _ f(10) . o qard
P(X =5) f(S) P(X=a)=P(a—ESXSa+§) =j_£ f(x)dx = f (a)
Therefore PX =a) = ef(a) = /@) 2
P(X=Db) ¢f(b) f(b)
1 e..il%ﬁ%#li (10 —10)2 0
_ oV2n _¢ 2 _ _ ¢ __ c18 Ratios of PDFs
1 _6=-w? (5 — 10)2 _325 :
e 207 e~ 22 e 4 are meaningful!

oV2m
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Continuous
conditional
distributions




Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

(x,y)
fxiy (x|y) =fX’Y 4 where fy (y) > 0

fr»)

P = X, =
ntuition: P(= Y= ) = (Xp(yx=yy> 2 funalyer - fX'Yf(yx('yy))egngY

Note that conditional PDF fxy is a "true" density:

> fX,Y(x» y) do = fr») _
N 16 fr»)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 21
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Why sums of random variables?

Sometimes modeling and understanding a complex RV, X, is difficult.
But if we can decompose X into the sum of simpler, independent RVSs,

We can compute distributions on X.

We can better understand how X changes as its constituent RVs change.

What can we model

with a triangular PDF? Sum of uniforms!
1 le(x1)

11fk)

1/2- 0 L
ﬂ fi, ()
S o +
[ [ [ [
o 1/2 1 3/22 %

o' 1

2
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We’re covering the
reverse direction for
now; the forward
direction will come
on Friday
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Everything* in probability is a sum or a product (or both)

*except conditional probability (a ratio)

Sum of values that can
be considered separately

(possibly weighted by
prob. of happening)

Product of values that
can each be considered
in sequence

E[X] = ZXP(X) E[X|Y =y] = f X fxy (x|y)dx
x weight - weight
n n
P(E) = ) P(EIF)P(F) PE) =Y PED
=1 weight i=1
Law of Total Probability Axiom 3, E = E; U---UE,

Qg stmirg warbined relngUng .

P(ENF NG)=P(E)P(F|IE)P(G|EF)

Chain Rule
P(X +Y = n) =ZP(X=k)P(Y=n—k)
xX,y) = X §
fX'Y( y) fX( )fy(}’) Sum of indep. discrete RVs
Independent cont. RVs (convolution)
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Conditional probability and Bayes’ Theorem

Definition Independence

P(E N F) E, F independent
P(F|E) = P(F)
\_'_I

Sample space doesn’t need
to be scaled

Bayes’ Theorem we prob. of event F }

P(F|E) = P(F)P(ElF)ﬁ Likelihood]

Posterior: prob. of |P (E) |
F knowing that E S' ingtoth t I
happened caling to the correct sample space

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 24
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Multiple Bayes’ Theorems

- P(F)P(E|F)
with _
events P(FIE) = P(E)
h o (1) py Wpx)y (x|y)
wit Y|X —
discrete RVs | Px (x )

You are given

this value... ( ) ( )
o fy(y fX|Y x|y
with x) =
continuous RVs leX(yl ) fx(x) Really E_i(ljl th'e
- same ideal!

...S0 this is just a scalar
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford Ul’liVEI’Sity 25
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Tracking in 2-D space

~

B W 5 2 ™ e
. o : 2 = .
& g
. Sk
5 ' ¢

. Last known possible position of
3 MH370 based on satellite data You want to know

g Somenieron =eines) the 2-D location of
* an object.

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).

Using the satellite
measurement,
where is the object?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 27




. : o~
Tracking in 2-D space ot

- Before measuring, we have some Top-down view

prior belief about the 2-D location
of an object, (X,Y).

* We observe some noisy
measurement D = 4, the Euclidean

distance of the object to a satellite. ~—
D=4
* After the measurement, what is our s f?
updated (posterior) belief of the 2- .

D location of the object?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 28



Tracking in 2-D space

* You hold some prior beliefs about the 2-D location of an object, (X,Y).
* You observe a noisy distance measurement, D = 4.

* How do you update your beliefs about the 2-D location of the object after
that noisy measurement?

likelihood pripr
Recall Bayes D%Setleiélfor (of evidence) belief
terminology: f (x |d) _ fD|X,Y (d |x, :V)fX,Y (x, y)
oot fo (@)

normalization constant

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 29



fDlX,Y(dlxr y) fX,Y(x: y)
fo(d)

1. Define prior frro(x,y1d) =

You have a prior belief about the 2-D location of an object, (X,Y).

Top-down view 3-D view
5

Let (X,Y) = object’s 2-D location,

assuming satellite is at (0,0) >

Yo

Suppose the prior distribution is a

symmetric bivariate normal distribution:
BYRVEVPIRIE ISR TS (N WVﬁ‘lv—A]s are rovineda

X

1 _ [e=3+(y-3)?] [(x=3)2+(y-3)2] *
fxy(x,y) = 502 e 2(2%) =K;-e 8
normalizing constant
N N

we AV vecawy | a8 L alwoa one abwet
‘ - a |
gl ey we dar awoﬁ.w‘w&vlw'ﬁwg -
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fDlX,Y(dlx: y) fX,Y(x: y)

>. Define likelihood aanp o) = 7o @
You observe a noisy distance measurement, D = 4. s
If you knew your actual location to be (x,y), you could argue —

Just how likely a measurement of D = 4 actually is.

Let D = measured radial distance from the satellite, where
actual (x,y) is known! h

* D is still noisy! Suppose noise is standard normal.
* On average, D is your true Euclidean distance: /x2 + y?2

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University 31



fDlX,Y(dlx: y) fX,Y(x: y)

>. Define likelihood i o) = 7@
You observe a noisy distance measurement, D = 4. FEmes
If you knew your actual location to be (x,y), you could argue —

Just how likely a measurement of D = 4 actually is.

Let D = measured radial distance from the satellite, where
actual (x,y) is known! h

g o -
LY

* D is still noisy! Suppose noise is standard normal.
* On average, D is your true Euclidean distance: /x2 + y?2

DIX,Y~N (= 0% =)

1
foxy(D=d|X=x,Y =y)=——¢
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fDlX,Y(dlx: y) fX,Y(x: y)

>. Define likelihood heaplen 1) = fo@
You observe a noisy distance measurement, D = 4. e
If you knew your actual location to be (x,y), you could argue — |
Just how likely a measurement of D = 4 actually is. e
Let D = measured radial distance from the satellite, where
actual (x,y) is known! Ah
% ~

* D is still noisy! Suppose noise is standard normal.
* On average, D is your true Euclidean distance: /x2 + y?2

DIX,Y~N (1 =/x2+y2,0%=1)

1 2 N 1 2
forxr (D = dIX = x,¥ =) = ——e™ 24NTH) _ K, . =3{a=V357)

21 normalizing constant
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. _ foixy(dlx,y) fry(x,y)
3. Compute posterior furp (oY1= A

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

Compute:

Posterior frrip @, v14) = fryp(X =x,Y = y|D = 4)
belief
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_ fDlX,Y(dlxr y) fX,Y(x: y)

3. Compute posterior farip (. y1d) A

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

Compute:

Posterior frrip @, v14) = fryp(X =x,Y = y|D = 4)
belief

Know:

. 2
Prior =32+ (r-3)] Observation forr (@) = Ky - e—%(d—me)
belief fxr(xy) =K, -€ 8 likelihood

Tips

* Use Bayes’ Theorem!

* fp(4) is just a scaling constant. Why?

* How can we approximate the final
scaling constant with a computer?

Sakdmi, and Jerry Cain, CS109, Spring 2024 Stanford University 35




Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

fxypX =x,Y =y|D = 4)

likelihood of D = 4 prior belief
. fD|X,Y(D — 4'l)( = X, Y = y)fX,Y(x' y) Bayes'’

Key: Once we know the

can computationally
approximate K, so that
fX,Y|D is a valid PDF.

part dependent on x,y, we

f(D — 4) Theorem
2
(4—vx2+y?) [(x-3)%+(y—3)?]
. KZ ¢ e_ 2 * Kl ‘ e_ 8
[0 =4
1(4—Jx2+y2) [(x—3)2+(y—3)2]]
K;-e” 2 * 8 1
- f(D=4)
2
B <4—\/x2+y2 , . [(x—3)2+(y—3)2]l
= [(4 e 2 8 |

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024 Stanford University
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C . (33) \s o &2 wike fon.
Tracking in 2-D space o

With this continuous version of Bayes’ Top-downview ~ 3-D view
theorem, we can explore new domains.

» Before measuring, you hold some
prior beliefs about the 2-D location of
an object, (X,Y).

Top-down view 3-D view
5

After the measurement, do you :
update your beliefs about the 2-D Y o
location of the object after that

noisy measurement. 5,
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Tracking in 2-D space: Posterior belief

Prior belief Posterior belief

Top-down view 3-D view Top-down view 3-D view
5

3

Yo

_ [x=3)%2+(y-3)?] X, y|4) =

fX,Y(X,y) =K, -e 8 fX,YID( y[4) 2
[(4—\/x2+y2) [(x_3)2 +(y—3)2]]
K4' e_ 2 + 3 1
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How'd you compute that K,?

To be a valid conditional PDF, f f fxyip(x,yl4) dxdy =1

[ [(4_ x2+y2) L G6=3)2+(G- 3)2]]
j f K, e 2 8 ldx dy =1

8 Idx dy (pull out K4, divide)

f J _ x2+y) L =32+ 0- 37

Approxmate

[ - x2+y (x 3)2+(y 3) ]]
K. z Z 8 TAxAy Use a computer!
4
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