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Today’s	lecture
Take what we’ve seen with discrete joint distributions…

…and generalize to continuous joint distributions.

For the most part, this
isn’t too bad. Examples:

But some concepts, while mathematically accessible given what we’ve 
learned, are difficult to implement in practice.
We’ll focus on some of these today.

3

Marginal 
distributions

𝑓! 𝑎 = $
"#

#
𝑓!,% 𝑎, 𝑦 𝑑𝑦

Independent RVs 𝑝!,% 𝑥, 𝑦 = 𝑝! 𝑥 𝑝% 𝑦 𝑓!,% 𝑥, 𝑦 = 𝑓! 𝑥 𝑓% 𝑦

𝑝! 𝑎 =*
&

𝑝!,% 𝑎, 𝑦

Goal of CS109 continuous joint 
distributions unit: build 
mathematical maturity
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Dance,	Dance,	Convolution

4

the convolution 
of 𝑝+ and 𝑝,

Recall that for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘
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Dance,	Dance,	Convolution

5

the convolution 
of 𝑝+ and 𝑝,

Recall that for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

the convolution 
of 𝑓+ and 𝑓,

For independent continuous random variables 𝑋 and 𝑌:

𝑓"#$ 𝛼 = ,
%&

&
𝑓" 𝑥 𝑓$ 𝛼 − 𝑥 𝑑𝑥

0
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& !
"#

%
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1

00 1 !

"! !
1

0 1 !

"! !
1 + = ?

Independent 𝑋, 𝑌
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0 1 !

"! !
1

Sum	of	independent	Uniforms
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🤔

Isn’t this just 
one??

𝑓+-, 𝛼 = (
./

/
𝑓+ 𝑥 𝑓, 𝛼 − 𝑥 𝑑𝑥

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

Not so fast…

𝑓, 𝑥
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Sum	of	independent	Uniforms
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𝑓+-, 𝛼 = (
./

/
𝑓+ 𝑥 𝑓, 𝛼 − 𝑥 𝑑𝑥

0 1 𝑥

𝑓+ 𝑥
1

𝑓+ 𝑥 = 01	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise

𝑥

𝑓, 𝛼 − 𝑥
1

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

𝑓, 𝛼 − 𝑥 = 01	 if 0 ≤ 𝛼 − 𝑥 ≤ 1
0	 otherwise 

?

= 01	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝛼 is a constant 
in the integral 
w.r.t. 𝑥.
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Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

Sum	of	independent	Uniforms

8

𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

0 1
𝑥

1

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥

0
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0 1
𝑥

1

Sum	of	independent	Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥
1/2

0

Integral = area under the curve
This curve = product of 2 functions of 𝑥
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Sum	of	independent	Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

3.  𝛼 = 1

4.  𝛼 = 3/2

5.  𝛼 ≥ 2

1/2

0 𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise
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0 1
!

1

Sum	of	independent	Uniforms

11

𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

3.  𝛼 = 1

4.  𝛼 = 3/2

5.  𝛼 ≥ 2

1/2

1
𝑓% 𝛼 − 𝑥

𝑓! 𝑥

0 𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise
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0 1
!

1 𝑓% 𝛼 − 𝑥

𝑓! 𝑥

Sum	of	independent	Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

3.  𝛼 = 1

4.  𝛼 = 3/2

5.  𝛼 ≥ 2

1/2

1

1/2

0 𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise
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0 1
!

1

Sum	of	independent	Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

3.  𝛼 = 1

4.  𝛼 = 3/2

5.  𝛼 ≥ 2

0

1/2

1

1/2

0

𝑓! 𝛼 − 𝑥 = .1	 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0	 otherwise 

𝑓" 𝑥 = .1	 if 0 ≤ 𝑥 ≤ 1
0	 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥
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Sum	of	independent	Uniforms

14

𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1  and 𝑌~Uni 0,1  be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1.  𝛼 ≤ 0

2.  𝛼 = 1/2

3.  𝛼 = 1

4.  𝛼 = 3/2

5.  𝛼 ≥ 2

0

1/2

1

1/2

0

𝑓+-, 𝛼 = 3
𝛼 0 ≤ 𝛼 ≤ 1

2 − 𝛼 1 ≤ 𝛼 ≤ 2
0 otherwise

0

1/2

𝛼

𝑓 "
#
!
𝛼

1/2 1 3/2 2

1

0
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Dance,	Dance,	Convolution	Extreme

15

2 3 4 5 6 7 8 9 10 11 12

6/36

0

% + ' = )

5/36
4/36
3/36
2/36
1/36.

%
+
'
=
)

1 2 3 4 5 6

! = #

$
!
=
#

1 2 3 4 5 6

! = #
$
!
=
#+ =

0

1/2

%

& !
"#

%

1/2 1 3/2 2

1

00 1 !

"! !
1

0 1 !

"! !
1 + =

Independent 𝑋, 𝑌

Independent 𝑋, 𝑌



Ratio	of	PDFs

16
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Relative	probabilities	of	continuous	random	variables
Let 𝑋 = time to finish Problem Set 4.
Suppose 𝑋~𝒩 10, 2 .
How much more likely are you to 
complete in 10 hours than 5 hours?

17

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B. 2
C. 4 56

4 7

D. 4 8
4 5

5             10 !

"(
!)
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Relative	probabilities	of	continuous	random	variables
Let 𝑋 = time to finish problem set 4.
Suppose 𝑋~𝒩 10, 2 .
How much more likely are you to 
complete in 10 hours than 5 hours?

18

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B. 2
C. 4 56

4 7

D. 4 8
4 5

5             10 !

"(
!)
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Ratios of PDFs 
are meaningful!

Relative	probabilities	of	continuous	random	variables

19

𝑃 𝑋 = 𝑎 = 𝑃 𝑎 −
𝜀
2 ≤ 𝑋 ≤ 𝑎 +

𝜀
2

𝑃 𝑋 = 10
𝑃 𝑋 = 5

=
𝑓 10
𝑓 5

𝑃 𝑋 = 𝑎
𝑃 𝑋 = 𝑏 =

𝜀𝑓 𝑎
𝜀𝑓 𝑏 =

𝑓 𝑎
𝑓 𝑏Therefore

= ?
$%&'

$#&'
𝑓 𝑥 𝑑𝑥 ≈ 𝜀𝑓(𝑎)

=

1
𝜎 2𝜋

𝑒"	
)*	"	+ !

,-!

1
𝜎 2𝜋

𝑒"	
.	"	+ !

,-!
=
𝑒"	

)*	")* !

,⋅,

𝑒"	
.	"	)* !

,⋅,

=	
𝑒(

𝑒%
')
*
	 = 518

5             10 !

"(
!)

Let 𝑋 = time to finish problem set 4.
Suppose 𝑋~𝒩 10, 2 .
How much more likely are you to 
complete in 10 hours than 5 hours?



Continuous	
conditional	
distributions

20
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Continuous	conditional	distributions
For continuous RVs 𝑋 and 𝑌, the conditional PDF of 𝑋 given 𝑌 is

𝑓"|$ 𝑥|𝑦 =
𝑓",$ 𝑥, 𝑦
𝑓$ 𝑦

Intuition:

Note that conditional PDF 𝑓+|, is a "true" density: 

21

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦 𝑓+|, 𝑥 𝑦 𝜀+ =
𝑓+,, 𝑥, 𝑦 𝜀+𝜀,
𝑓, 𝑦 𝜀,

(
./

/
𝑓+|, 𝑥|𝑦 𝑑𝑥 = (

./

/ 𝑓+,, 𝑥, 𝑦
𝑓, 𝑦

𝑑𝑥 =
𝑓, 𝑦
𝑓, 𝑦

= 1

where 𝑓! 𝑦 > 0
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Why	sums	of	random	variables?
Sometimes modeling and understanding a complex RV, 𝑋, is difficult.
But if we can decompose 𝑋 into the sum of simpler, independent RVs,
• We can compute distributions on 𝑋.
• We can better understand how 𝑋 changes as its constituent RVs change.

22

We’re covering the 
reverse direction for 

now; the forward 
direction will come 

on Friday

What can we model 
with a triangular PDF?

0

1/2

𝑥

𝑓 𝑥

1/2 1 3/2 2

1

0

Sum of uniforms!

0 1 𝑥)

𝑓!" 𝑥)1

0 1 𝑥,

𝑓!! 𝑥,1+
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Everything*	in	probability	is	a	sum	or	a	product	(or	both)

23

Sum of values that can 
be considered separately 

(possibly weighted by 
prob. of happening)

Product of values that 
can each be considered 

in sequence

𝐸 𝑋|𝑌 = 𝑦 = (
./

/
𝑥𝑓+|, 𝑥|𝑦 𝑑𝑥𝐸 𝑋 =;

:

𝑥𝑝 𝑥

Law of Total Probability

𝑃(𝐸) =;
;<=

>

𝑃 𝐸|𝐹; 𝑃 𝐹;
weight

weightweight

Axiom 3, 𝐸 = 𝐸+ ∪⋯∪ 𝐸,

𝑃 𝐸 =;
;<=

>

𝑃 𝐸;

Chain Rule
𝑃(𝐸 ∩ 𝐹 ∩ 𝐺) = 𝑃 𝐸 𝑃 𝐹|𝐸 𝑃 𝐺|𝐸𝐹

𝑓+,, 𝑥, 𝑦 = 𝑓+ 𝑥 𝑓, 𝑦
Independent cont. RVs 

*except conditional probability (a ratio)

𝑃 𝑋 + 𝑌 = 𝑛 =*
0

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Sum of indep. discrete RVs 
(convolution)



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional	probability	and	Bayes’	Theorem

24

𝑃 𝐹|𝐸 =
𝑃 𝐹 𝑃 𝐸|𝐹

𝑃 𝐸

𝑃 𝐹|𝐸 =
𝑃 𝐸 ∩ 𝐹
𝑃 𝐸

Definition

Bayes’ Theorem Prior: some prob. of event 𝐹

Posterior: prob. of 
𝐹 knowing that 𝐸 

happened

Likelihood

Scaling to the correct sample space

Scaling to the correct sample space

Independence

𝑃 𝐹|𝐸 = 𝑃 𝐹

Sample space doesn’t need
to be scaled

𝐸, 𝐹 independent
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Multiple	Bayes’	Theorems

25

𝑝!|# 𝑦|𝑥 =
𝑝! 𝑦 𝑝#|! 𝑥|𝑦

𝑝# 𝑥

𝑃 𝐹|𝐸 =
𝑃 𝐹 𝑃 𝐸|𝐹

𝑃 𝐸

𝑓!|# 𝑦|𝑥 =
𝑓! 𝑦 𝑓#|! 𝑥|𝑦

𝑓# 𝑥

with 
events

with
discrete RVs

with
continuous RVs Really all the 

same idea!

You are given 
this value…

…so this is just a scalar



Intense
Exercise

26
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Tracking	in	2-D	space

27

You want to know
the 2-D location of
an object.

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).

Using the satellite
measurement,
where is the object?
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• Before measuring, we have some 
prior belief about the 2-D location
of an object, 𝑋, 𝑌 .

• We observe some noisy 
measurement 𝐷 = 4, the Euclidean 
distance of the object to a satellite.

• After the measurement, what is our 
updated (posterior) belief of the 2-
D location of the object?

28

Tracking	in	2-D	space
Top-down view

Satellite at (0, 0)

?
𝐷 = 4
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Tracking	in	2-D	space
• You hold some prior beliefs about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• How do you update your beliefs about the 2-D location of the object after 

that noisy measurement?

29

posterior
belief

likelihood
(of evidence)

prior
belief

normalization constant

Recall Bayes 
terminology:

𝑓#,!|% 𝑥, 𝑦|𝑑 =
𝑓%|#,! 𝑑|𝑥, 𝑦 𝑓#,! 𝑥, 𝑦

𝑓% 𝑑
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Top-down view

1.	Define	prior
You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .

30

Let 𝑋, 𝑌 = object’s 2-D location, 
assuming satellite is at (0,0)

Suppose the prior distribution is a
symmetric bivariate normal distribution:

𝑥

𝑦

𝑓 !
,%
𝑥,
𝑦

3-D view

𝑓+,, 𝑥, 𝑦 =
1

2𝜋2E 𝑒
.	

:.G !- H.G !

E E!

normalizing constant

= 𝐾5 ⋅ 𝑒
%	 #$% &' ($% &

)

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑
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2.	Define	likelihood
You observe a noisy distance measurement, 𝐷 = 4.

31

Let 𝐷 = measured radial distance from the satellite, where
actual 𝑥, 𝑦  is known! 

• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance: 𝑥E + 𝑦E

If you knew your actual location to be 𝑥, 𝑦 , you could argue
Just how likely a measurement of 𝐷 = 4 actually is.

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑
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2.	Define	likelihood
You observe a noisy distance measurement, 𝐷 = 4.

32

Let 𝐷 = measured radial distance from the satellite, where
actual 𝑥, 𝑦  is known!

• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance:

If you knew your actual location to be 𝑥, 𝑦 , you could argue
Just how likely a measurement of 𝐷 = 4 actually is.

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑

𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝑥& + 𝑦&, 𝜎& = 1

𝑓I|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1
2𝜋

𝑒.
=
E J. :!-H!

!

(𝐴) (𝐵)

(𝐶)

(𝐷)

𝑥E + 𝑦E
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2.	Define	likelihood
You observe a noisy distance measurement, 𝐷 = 4.

33

If you knew your actual location to be 𝑥, 𝑦 , you could argue
Just how likely a measurement of 𝐷 = 4 actually is.

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑

𝐷|𝑋, 𝑌~𝑁 𝜇 = 	 𝐴 	 , 𝜎& = 	 𝐵 	

𝑓I|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1

	 𝐶 	 2𝜋
𝑒 	 I 	

𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝑥& + 𝑦&, 𝜎& = 1

𝑓I|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1
2𝜋

𝑒.
=
E J. :!-H!

!

=	 𝑒.
=
E J. :!-H!

!

normalizing constant
𝐾8 ⋅

Let 𝐷 = measured radial distance from the satellite, where
actual 𝑥, 𝑦  is known!

• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance: 𝑥E + 𝑦E
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3.	Compute	posterior
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?

34

𝑓",$|M 𝑥, 𝑦|4 = 𝑓",$|M 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4Posterior
belief

Compute:

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑
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3.	Compute	posterior
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?
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𝑓",$|M 𝑥, 𝑦|4 = 𝑓",$|M 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4Posterior
belief

Compute:

Tips
• Use Bayes’ Theorem!
• 𝑓I 4  is just a scaling constant. Why?
• How can we approximate the final 

scaling constant with a computer?

𝑓-|",! 𝑑|𝑥, 𝑦 = 𝐾' ⋅ 𝑒
%+' 0% 13#23

3
Know:

Prior 
belief

Observation 
likelihood𝑓!,% 𝑥, 𝑦 = 𝐾) ⋅ 𝑒.	

"#$ !% &#$ !

'

𝑓!,%|2 𝑥, 𝑦|𝑑 =
𝑓2|!,% 𝑑|𝑥, 𝑦 	 𝑓!,% 𝑥, 𝑦

𝑓2 𝑑
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Tracking	in	2-D	space
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?

36

𝑓",$|M 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4 =
𝑓M|",$ 𝐷 = 4|𝑋 = 𝑥, 𝑌 = 𝑦 𝑓",$ 𝑥, 𝑦

𝑓(𝐷 = 4)
Bayes’
Theorem

=
𝐾E ⋅ 𝑒

.
M. :!-H!

!

E ⋅ 𝐾= ⋅  𝑒.	
:.G !- H.G !

N

𝑓(𝐷 = 4)

likelihood of 𝐷 = 4 prior belief

=
𝐾G ⋅ 𝑒

.
M. :!-H!

!

E 	-
:.G !- H.G !

N  
𝑓(𝐷 = 4)

= 𝐾M ⋅ 𝑒
.

(# "!%&!
!

! 	- "#$ !% &#$ !

'

Key: Once we know the 
part dependent on 𝑥, 𝑦, we 

can computationally 
approximate 𝐾M so that 
𝑓+,,|I is a valid PDF.
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With this continuous version of Bayes’ 
theorem, we can explore new domains.

• Before measuring, you hold some 
prior beliefs about the 2-D location of 
an object, 𝑋, 𝑌 .

• You observe a noisy distance 
measurement, 𝐷=4.

• After the measurement, do you 
update your beliefs about the 2-D 
location of the object after that 
noisy measurement.

37

Tracking	in	2-D	space
Top-down view

!

3-D view

"

Top-down view 3-D view

0.08     
0.04
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Tracking	in	2-D	space:	Posterior	belief

38

𝑓+,, 𝑥, 𝑦 = 𝐾= ⋅ 𝑒
.	 "#$ !% &#$ !

'

Prior belief Posterior belief
Top-down view

𝑦

3-D view

𝑥

𝑦

𝑥

Top-down view 3-D view

𝑓+,,|I 𝑥, 𝑦|4 = 

	 𝐾M⋅ 𝑒
.

M. :!-H!
!

E 	-
:.G !- H.G !

N

0.08     
0.04
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How’d	you	compute	that	𝐾!?

To be a valid conditional PDF,
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(
./

/
(
./

/
𝑓+,,|I 𝑥, 𝑦|4 	𝑑𝑥	𝑑𝑦 = 1

1
𝐾M

≈;
H

;
:

𝑒.
M. :!-H!

!

E 	-
:.G !- H.G !

N ∆𝑥∆𝑦

(
./

/
(
./

/
𝐾M ⋅ 𝑒

.
M. :!-H!

!

E 	-
:.G !- H.G !

N 𝑑𝑥	𝑑𝑦 = 1

Approximate:

1
𝐾M

= (
./

/
(
./

/
𝑒.

M. :!-H!
!

E 	-
:.G !- H.G !

N 𝑑𝑥	𝑑𝑦 (pull out 𝐾*, divide)

Use a computer!


