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CS109 May 16, 2024

Continuous Joint Distributions, Central Limit Theorem

Before you leave lab, make sure you click here so that you’re marked as having attended this
week’s section. The CA leading your discussion section can enter the password needed once
you’ve submitted.

1 Warmups
1.1 Food for Thought
Karel the dog eats an unpredictable amount of food. Every day, the dog is equally likely to eat
between a continuous amount in the range 100 to 300g. How much Karel eats is independent of all
other days. You only have 6.5kg of food for the next 30 days. What is the probability that 6.5kg
will be enough for the next 30 days?

The distribution of the sum is given by the central limit theorem. Let 𝑋𝑖 ∼ Uni(100, 300)
where 𝐸 [𝑋𝑖] = 200 and 𝑉𝑎𝑟 (𝑋𝑖) = 1

12 (200)2 ≈ 3333.

𝑌 =
∑︁
𝑖

𝑋𝑖

Let’s approximate 𝑌 with a normal R.V.

∼ N(6000, 316.2122)

𝑃(𝑌 < 6500)

𝑃

(
𝑌 − 6000
316.212

<
6500 − 6000

316.212

)
Let 𝑌−6000

316.212 = 𝑍 ∼ N(0, 1)

𝑃

(
𝑍 <

6500 − 6000
316.212

)
𝑃 (𝑍 < 1.58)
Φ (1.58)

https://web.stanford.edu/class/cs109/cgi-bin/lab6
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1.2 Sample and Population Mean
Computing the sample mean is similar to the population mean: sum all available points and divide
by the number of points. However, sample variance is slightly different from population variance.

1. Consider the equation for population variance, and an analogous equation for sample
variance.

𝜎2 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2

𝑆2
𝑏𝑖𝑎𝑠𝑒𝑑 =

1
𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�)2

𝑆2
𝑏𝑖𝑎𝑠𝑒𝑑

is a random variable to estimate the constant 𝜎2. Because it is biased,
𝐸 [𝑆2

𝑏𝑖𝑎𝑠𝑒𝑑
] ≠ 𝜎2. Is 𝐸 [𝑆2

𝑏𝑖𝑎𝑠𝑒𝑑
] greater or less than 𝜎2?

2. Consider an alternative Random Variable, 𝑆2
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

(known simply as 𝑆2 in class). The
technique of un-biasing variance is known as Bessel’s correction. Write the 𝑆2

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

equation.

a. 𝐸 [𝑆2
biased] < 𝜎2. The intuition is that the spread of a sample of points is generally

smaller than the spread of all the points considered together. This becomes more clear
when we consider the unbiased version and how it makes the expression evaluate to a
larger number.

b. 𝑆2
unbiased = 𝑆2 = 1

𝑛−1
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

2 Problems
2.1 Sum of Two Exponentials
Consider two independent random variables 𝑋 and 𝑌 , each Exponentials with different
parameters—specifically, let 𝑋 ∼ 𝐸𝑥𝑝( 1

2 ) and 𝑌 ∼ 𝐸𝑥𝑝( 1
3 ). Assuming 𝑇 = 𝑋 + 𝑌 , derive and

present the probability density function 𝑓𝑇 (𝑡) by evaluating the relevant convolution. Once you
arrive at your 𝑓𝑇 (𝑡), verify your answer by calculating 𝑓𝑇 (2) out to three decimal places.

If we let 𝑋 and 𝑌 be continuous random variables with probability density functions 𝑓𝑋 (𝑡)
and 𝑓𝑌 (𝑡), then the probability density function and 𝑓𝑇 (𝑡) of 𝑇 = 𝑋 +𝑌 is the convolution of
𝑓𝑋 (𝑡) and 𝑓𝑌 (𝑡)—that is:

𝑓𝑇 (𝑡) =
∫ ∞

−∞
𝑓𝑋 (𝑥) 𝑓𝑌 (𝑡 − 𝑥)𝑑𝑥

In the case of this problem, both 𝑋 and 𝑌 are Exponentials with supports of all nonnegative
real numbers, so the bounds of the integral can be compressed to include just those values
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where both 𝑥 and 𝑡 − 𝑥 are greater than 0 (which is [0, 𝑡]). Of course, the density function
for a general Exponential is 𝑓𝑋 (𝑥) = 𝜆𝑒−𝜆𝑥 , so the convolution to be evaluated should be:

𝑓𝑇 (𝑡) =
∫ 𝑡

0
𝑓𝑋 (𝑥) 𝑓𝑌 (𝑡 − 𝑥)𝑑𝑥

=

∫ 𝑡

0

1
2
𝑒−

1
2 𝑥 · 1

3
𝑒−

1
3 (𝑡−𝑥)𝑑𝑥

=
1
6
𝑒−

1
3 𝑡

∫ 𝑡

0
𝑒−

1
6 𝑥𝑑𝑥

= −𝑒− 1
3 𝑡𝑒−

1
6 𝑥
���𝑡
0

= 𝑒−
1
3 𝑡 (1 − 𝑒−

1
6 𝑡)

= 𝑒−
1
3 𝑡 − 𝑒−

1
2 𝑡

That’s the probability density function of interest, and its value at 𝑡 = 2 is 𝑓𝑇 (2) = 0.145537.

2.2 Grading Exams
Jacob and Kathleen are planning to grade Problem 1 on your Week 7 exam, and they’ll each grade
their half independently of the other. Jacob takes 𝑋 ∼ 𝐸𝑥𝑝( 1

3 ) hours to finish his half while
Kathleen takes 𝑌 ∼ 𝐸𝑥𝑝( 1

4 ) hours to finish his half.

a. Find the CDF of 𝑋/𝑌 , which is the ratio of their grading completion times.

The random variable of interest is the ratio 𝑋/𝑌 , so the CDF, 𝐹 (𝑟), in this case would be
𝑃( 𝑋

𝑌
< 𝑟), where 𝑟 stands for ratio and ranges from 0 to ∞. Rearranging, we are interested
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in computing 𝑃(𝑋 < 𝑟𝑌 ), which can be computed in terms of the PDFs for 𝑋 and 𝑌 :

𝐹 (𝑟) = 𝑃( 𝑋
𝑌

< 𝑟) = 𝑃(𝑋 < 𝑟𝑌 )

=

∫ ∞

0

∫ 𝑟𝑦

0

1
12

𝑒−
1
3 𝑥𝑒−

1
4 𝑦𝑑𝑥𝑑𝑦

=
1
12

∫ ∞

0
𝑒−

1
4 𝑦

∫ 𝑟𝑦

0
𝑒−

1
3 𝑥𝑑𝑥𝑑𝑦

= −1
4

∫ ∞

0
𝑒−

1
4 𝑦
(
𝑒−

1
3 𝑥
)���𝑟𝑦

0
𝑑𝑦

= −1
4

∫ ∞

0
𝑒−

1
4 𝑦
(
𝑒−

1
3 𝑟𝑦 − 1

)
𝑑𝑦

=
1
4

∫ ∞

0
𝑒−

1
4 𝑦𝑑𝑦 − 1

4

∫ ∞

0
𝑒−(

1
3 𝑟+

1
4 )𝑦𝑑𝑦

= 1 +
1
4

1
3𝑟 +

1
4
𝑒−(

1
3 𝑟+

1
4 )𝑦

���∞
0

= 1 −
1
4

1
3𝑟 +

1
4
=

1
3𝑟 +

1
4

1
3𝑟 +

1
4
−

1
4

1
3𝑟 +

1
4

=

1
3𝑟

1
3𝑟 +

1
4

For those question why that first of two integrals vanished to 1, note that the integrand is
just the PDF of Expo(𝜆 = 1

4 )!

Incidentally, we can compute the probability density function from the CDF by dif-
ferentiating with respect to 𝑟:

𝑓 (𝑟) = 𝑑𝐹 (𝑟)
𝑑𝑟

=
𝑑

𝑑𝑟

1
3𝑟

1
3𝑟 +

1
4

=
1

12( 1
3𝑟 +

1
4 )2

b. What is the probability that Kathleen finishes before Jacob does?

In comparison, that is delightfully straightforward, because we get to plug 𝑟 = 1 into our
result from part a. 𝑃(𝑋 < 𝑌 ) = 1

3 · 12
7 = 4

7 . That, however, is the probability that Jacob
finishing before Kathleen, and we want to opposite. Therefore, the probability of interest
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is really 3
7 . Given the expected completion times of 3 and 4 hours for Jacob and Kathleen,

respectively, this seems right.

2.3 Central Limit Theorem and Sampling Calisthenics
a. Let 𝑋1, 𝑋2, 𝑋3, ..., 𝑋1000 be iid—that is, independent and identically distributed—such that

𝑋𝑖 ∼ NegBin(𝑟 = 10, 𝑝 = 0.5), and let 𝑊 = 𝑋1 + 𝑋2 + ... + 𝑋1000. According to the Central
Limit Theorem, what distribution does 𝑊 assume, and what are its parameters?

This is classic Central Limit Theorem where the distribution of the sum is a Gaussian with
mean 1000 𝐸 [𝑋𝑖] and variance 1000𝑉𝑎𝑟 (𝑋𝑖). The formulas for a Negative Binomial’s mean
and variance are well-defined and are computed as:

𝐸 [𝑋𝑖] =
𝑟

𝑝
=

10
0.5

= 20

𝑉𝑎𝑟 (𝑋𝑖) =
𝑟 (1 − 𝑝)

𝑝2 =
10 · 0.5

0.52 = 20

How neat is it that the mean and variance are the same? This all means that 𝑊 ∼
N(20000, 20000).

b. Define �̄� = 1
1000

∑1000
𝑖=1 𝑋𝑖 to be the sample mean of our 1000 iid samples. What is the

standard deviation of the random variable �̄�?

The Central Limit Theorem has a lot to say about the distribution of sample means as well.
In particular, for this problem, �̄� ∼ N(𝐸 [𝑋𝑖], 𝑉𝑎𝑟 [𝑋𝑖]

1000 ). That’s more than we’re asking—all
I need from you is that 𝑉𝑎𝑟 (𝑋𝑖) = 20

1000 = 0.02.

c. You compute the variance of your 1000 samples, 𝑋1, 𝑋2, 𝑋3, ..., 𝑋1000 according to the
traditional definition of variance—i.e. 1

1000
∑1000

𝑖=1 (𝑋𝑖 − �̄�)2. Do you expect this variance to,
more often than not, be larger, equal to, or smaller than the variance of NegBin(10, 0.5).
Explain your answer.

Here the population variance is 20, since we know the population distribution is the Negative
Binomial. Recall that the unbiased sample variance divides the sum of the differences squared
by 𝑛 − 1, or 999. The traditionally computed variance divides by a slightly larger number of
1000, so we expect the traditionally computed variance to, more often than not, be a little
too low.

d. The number of samples needed for the Central Limit Theorem to apply is generally
understood to be 30 or more. However, the Central Limit Theorem works well for an even
smaller number of samples when 𝑋𝑖 ∼ Bin(10, 0.5) than is does when
𝑋𝑖 ∼ NegBin(10, 0.5). Briefly explain why.
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The simple answer is that 𝑋𝑖 ∼ Bin(10, 0.5) is symmetric, so there are no asymmetries
to overcome as you add samples together. In fact, you can view, say, 3 Bin(10, 0.5) as 30
Ber(0.5).

e. Recall that sampling theory allows a reasonably large sample to stand in for the true
population distribution. When resampling from the sample for bootstrapping purposes, we
generally do so with replacement. Why with replacement instead of without?

We sample with replacement because we treat the original set of samples as a probability
mass function. If we were to sample without replacement, we’re incapable of creating
resamples of a size larger than the original sample, and when the size of the resample is
close to the size of the original, each resample would essentially be a replica of the original.
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